In Goodpasture’s Disease, CD4⁺ T Cells Escape Thymic Deletion and Are Reactive with the Autoantigen α3(IV)NC1

ALAN D. SALAMA,* AFZAL N. CHAUDHRY,* JAMES J. RYAN,* EFRAM EREN,† JEREMY B. LEVY,* CHARLES D. PUSEY,* LIZ LIGHTSTONE,* and ROBERT I. LECHLER†

*Renal Section and †Department of Immunology, Division of Medicine, Imperial College School of Medicine, Hammersmith Hospital, London, United Kingdom.

Abstract. Goodpasture’s disease is characterized by rapidly progressive glomerulonephritis and pulmonary hemorrhage, in association with circulating and deposited anti-glomerular basement membrane antibodies that recognize the α3 chain of type IV collagen [α3(IV)NC1] (known as the Goodpasture antigen). Unlike many other autoimmune diseases, recurrences are rare. In experimental models and human studies, both humoral and cellular mechanisms have been demonstrated to be involved in disease pathogenesis. However, there are few data on the characteristics of the autoreactive T cells or the mechanisms of tolerance to the autoantigen in human patients. It was demonstrated, using immunohistochemical analyses and reverse transcription-PCR, that the Goodpasture antigen is expressed in normal human thymus. Using limiting dilution analyses, the frequencies of circulating autoreactive T cells in patients and control subjects were assessed. During acute disease, there were increased frequencies of CD4⁺ T cells reactive with α3(IV)NC1 (ranging from 1:6300 to 1:65,000), which decreased with time. There was a significant difference between patients during their acute disease phase and control subjects with respect to the frequency index for α3(IV)NC1-specific CD4⁺ T cells (P < 0.05, Mann Whitney U test). The decrease in autoreactive CD4⁺ T-cell numbers during recovery may be the reason why recurrences are infrequent and may explain the loss of pathogenic T-cell help. Goodpasture’s disease is characterized by rapidly progressive glomerulonephritis, often accompanied by pulmonary hemorrhage. It is associated with circulating glomerular basement membrane (GBM)-specific antibodies, which deposit in a linear manner along the GBM and give rise to the characteristic renal biopsy findings. The autoantigen has been characterized as the α3 chain of type IV collagen [α3(IV)NC1] (1,2), which has limited tissue distribution (3) and to which the autoantibody response is highly restricted (4). Unlike other autoimmune conditions, the disease rarely exhibits a relapsing-remitting course (5). Without treatment, autoantibody levels decrease to normal in a period of 2 to 3 yr (6).

Both humoral and cellular immune responses are implicated in disease pathogenesis. Several lines of evidence suggest the pathogenicity of antibodies. First, passive transfer of anti-GBM antibodies induces nephritis in monkeys, sheep, and rodents (7–9). Second, antibody levels are broadly correlated with disease activity in clinical studies (10,11). Third, disease recurrence has been documented when renal transplantation has been undertaken in the presence of circulating antibodies (11).

However, data from experimental models indicate that cell-mediated immunity is both necessary (12) and sufficient (13) to induce disease and that anti-T-cell therapy is effective in preventing disease (14). T cells are implicated in the pathogenesis of human disease by the presence of intraglomerular T cells in renal biopsy samples (15,16) and by the strong association of the disease with the HLA class II alleles DR15 and DR4 (17). Furthermore, the class-switched autoantibodies (predominantly IgG1 and IgG4) suggest that T-cell help is required for disease initiation (18). There are few published data on the nature of the autoreactive T cells. Our group previously reported proliferation of peripheral blood mononuclear cells (PBMC) from patients with Goodpasture’s disease in response to affinity-purified human GBM. However, one-half of the control subjects also exhibited some proliferation in response to GBM (19). Another group generated GBM-specific T-cell clones from patients; however, the clones were CD8⁺ and HLA class I-restricted, making them less relevant to the study of the T cells involved in human disease (20).

Recent data indicated that a number of autoantigens, including “sequestered antigens” and those with restricted tissue expression (such as myelin basic protein, glutamic acid decarboxylase, and insulin), are expressed in human thymic tissue (21). These findings suggested that central deletion of autoreactive T cells contributed to the T-cell tolerance to tissue-specific autoantigens. They also suggested that autoreactive T cells that escaped this selection would be of low avidity and perhaps regulated in health by peripheral mechanisms of tolerance (22). Alternatively, thymic dysfunction in presenting these antigens might lead to loss of...
central tolerance. We sought the presence of the Goodpasture antigen (GA) in human thymic tissue using immunohistochemical analysis with a monoclonal antibody (mAb) directed against the GA and using reverse transcription (RT)–PCR with α3(IV)NC1-specific primers. We proceeded to measure the frequency of autoreactive T cells directed against α3(IV)NC1 in patients at different disease time points and in control subjects. Our results suggest that central tolerance may operate to eliminate autoreactive T cells against the GA but some CD4+ T cells do escape this regulation and are observed at an elevated frequency in acute disease.

Materials and Methods

Expression of GA in Human Thymus

Human thymic tissue was obtained from children (age, 1 wk to 13 mo) undergoing routine cardiac surgery and was immediately snap-frozen in liquid nitrogen. Sections were cut and maintained at −20°C. Staining was performed using the P1 mAb directed against α3(IV)NC1, which was produced as described previously (23). The second-layer antibody was rabbit anti-mouse Ig (Dako, Bucks, UK), and detection was performed using the avidin-biotin complex immunoperoxidase technique (Dako). Briefly, the sections were incubated with the primary antibody at 4°C overnight, followed by incubation with the second-layer antibody at room temperature for 1 h; development was performed with the avidin-biotin complex counterstained with hematoxylin. Negative control experiments were performed with isotype-matched mAb. The positive control was a section of renal tissue from a patient with Goodpasture’s disease.

RT-PCR for α3(IV)NC1

Whole thymus was homogenized, and RNA was extracted using RNazol B (Biogenesis, Poole, Dorset, UK). Thymic explants were used to obtain epithelial cell cultures, from which RNA was also extracted. Briefly, thymic fragments were treated with collagenase (Sigma, Poole, Dorset, UK) and plated onto collagen-coated tissue culture flasks. Epithelial cell purity was confirmed with cytokeratin staining.

Five micrograms of total RNA was reverse-transcribed with Superscript II (Gibco-BRL, Paisley, Scotland), using oligo(dt) (Gibco-BRL) as a primer. For amplification with a set of α3(IV)NC1-specific primers, 5% of the reaction product was used. Primers were as follows: forward, GCCCCGATCCATGGGATTGCCAGGTTTG; reverse, TCCCCTCAGGCTCCTGCAGGTGTTT. The following PCR conditions were used: 1 min at 94°C, 1 min at 60°C, and 1 min at 72°C for 35 cycles. A negative control experiment was performed with no reverse transcriptase in the reaction mixture.

Antigen Production

Recombinant α3(IV)NC1 was produced in COS-7 cells by using DEAE-dextran-mediated transfection, according to previously published methods (24,25). The α3(IV)NC1 plasmid DNA was cloned into a pFLAG CMV-1 expression system (Kodak, Rochester, NY), and the secreted material was purified in a single affinity step on an anti-FLAG-agarose column. Briefly, cells were grown to subconfluence in Dulbecco’s modified Eagle’s medium (Gibco-BRL) with 5% fetal calf serum (MMB, Bourne End, UK) and penicillin/streptomycin (Gibco-BRL). Twenty micrograms of α3(IV)NC1 plasmid DNA in phosphate-buffered saline (PBS) and 5% DEAE-dextran (Pharmacia, Uppsala, Sweden) were added to the cells for 30 min. Whole medium containing 80 μM chloroquine (Sigma) was then added for an additional 2.5 h. After this, the supernatant was washed off and medium containing 10% DMSO was added for 2.5 min, aspirated, and replaced with fresh medium. Medium was collected every 72 h for a total of 10 d. The supernatant material was passed over a column containing anti-FLAG antibody, eluted using glycine-HCl (pH 3.5), neutralized, and dialyzed with PBS.

Collagenase-solubilized GBM (CS-GBM) was produced as described previously, by sieving cadaveric human kidneys obtained at autopsy and isolating glomeruli (26). These were disrupted by sonication and digested with collagenase I (Sigma). Tetanus toxoid was purchased from Evans Medical (Leatherhead, UK).

Limiting Dilution Analyses

Patients and Control Subjects. Patients presenting with histologically and serologically confirmed Goodpasture’s disease underwent venesection as soon as the diagnosis was confirmed and before treatment, if possible. However, only one patient (patient 3) had not received any immunosuppressive therapy at the time of venesection. All other acutely presenting patients had begun their treatment regimens within the previous 2 wk. The study received local research ethics committee approval.

Presentation of these patients was with acute renal failure in all cases and with pulmonary hemorrhage in two cases. All except two of the patients survived and renal recovery occurred for six patients, although three experienced residual renal impairment. Treatment varied according to the clinical situation but usually consisted of daily oral administration of prednisolone (starting at 60 mg and decreasing by 10 to 15 mg/wk until a dose of 20 mg was reached, after which decrements were of 2.5 mg/fortnight), daily oral administration of cyclophosphamide (2 mg/kg), and daily or near-daily plasma exchange (4-L exchanges for 14 d). For one patient (patient 1), additional pulsed methylprednisolone therapy (three daily pulses of 0.5 g) had been administered at the referring hospital. One patient (patient 3) who was dialysis-dependent at the time of presentation was not initially undergoing immunosuppressive therapy but subsequently developed pulmonary hemorrhage and received conventional treatment as described above. Immunosuppressive therapy was withdrawn during a period of 6 mo after presentation. Cyclophosphamide was withdrawn at 2 mo, and oral steroid treatment was discontinued by 6 mo for all except three patients. These three patients continued to receive low doses of steroids as follows: at 12 mo, to treat continued nephrotic-range proteinuria (patient 1, 15 mg of prednisolone); after delayed pulmonary hemorrhage (patient 3, 15 mg of prednisolone); and at 10 yr, to treat concurrent myasthenia gravis (patient 6, 5 mg of prednisolone). The patient characteristics, treatments, and outcomes are summarized in Table 1.

PBMC were isolated (see below) and stored in liquid nitrogen until required. Patients underwent tissue-typing using conventional DNA methods. Cells were also obtained from a number of patients after the acute disease, in some cases as long as 10 yr after the initial presentation. Control samples were from healthy volunteers.

Cell Isolation and Enrichment. PBMC were obtained by separating whole blood using Lymphoprep (Nycomed, Oslo, Norway). CD4+ T cells and antigen-presenting cells (APC) were purified by immunomagnetic depletion using Dynabeads (Dynal, Oslo, Norway). PBMC were incubated with primary antibody for 45 min at 4°C on a roller and then washed twice in PBS. Anti-mouse Ig-coupled Dynabeads were washed in medium [RPMI 1640 medium (ICN Pharmaceuticals, Thame, UK) with 10% human AB serum] and added, according to the recommendations of the manufacturer, for two 45-min periods at 4°C, on a roller. Bound cells were removed after
passage over a magnet, and the remaining cells were washed in whole medium. APC were obtained by depleting PBMC of T cells with anti-CD4 and anti-CD8 mAb (Serotec, Oxford, UK). CD4⁺ T cells were obtained by first performing a PBMC-adherence step at 37°C and then incubating the nonadherent cells with anti-CD33, -CD19, -CD16, -CD14, -CD56, and -CD8 mAb (all from Serotec) to deplete B cells, monocytes, macrophages, dendritic cells, natural killer cells, and CD8⁺ T cells, respectively. Cell purity was confirmed by staining with anti-CD4/CD8 and anti-CD3/DR mAb (Becton Dickinson, Mountain View, CA), and flow cytometry was performed with an EPICS XL flow cytometer (Coulter Electronics, Luton, UK).

T-Cell Proliferation. APC were pulsed overnight at 37°C with medium alone, recombinant α3(IV)NC1 at 5 μg/ml, CS-GBM at 20 μg/ml, or tetanus toxoid (Evans Medical) at 1:1000 dilution. After being washed in PBS, the cells were plated in complete medium [RPMI 1640 medium containing 2 mM l-glutamine, 50 μg/ml penicillin, and 50 μg/ml streptomycin (Gibco-BRL), with 10% human AB serum] in 96-well, round-bottomed plates (Nunc, Roskilde, Denmark). CD4⁺ T cells were maintained at 4°C overnight, counted, and plated in doubling dilutions into the 96-well plates; 24 replicates were plated for each T-cell dilution. The final 24 wells contained only APC and served as negative controls. After 6 d, the wells were pulsed with 1 μCi of [³H]thymidine for the last 16 h of incubation. Plates were collected and counted in a β-counter.

Calculation of Frequencies and Antigen/Autologous Mixed Lymphocyte Reaction Ratios. The frequencies of CD4⁺ T cells reacting to each APC preparation were calculated using the modified score function of the maximal likelihood method, as described previously (27). Calculations were performed using a newtonian iterative method with Microsoft Excel version 5 (Microsoft, Redmond, WA). Only results with values of >0.05 (χ² test) were used for further analysis. Because incubation of CD4⁺ T cells with APC in the absence of antigen produces a proliferative response, known as the autologous mixed lymphocyte reaction (AMLR), all frequencies were then expressed as the ratio of the antigen-specific response to the AMLR; this ratio was termed the frequency index. Derivation of the frequency index is indicated by the following equation: frequency index = frequency of CD4⁺ cells reacting to antigen-pulsed APC/ frequency of CD4⁺ cells reacting to unpulsed APC. Assays were highly reproducible within subjects with respect to T-cell frequencies, whether fresh or frozen cells were used.

Results

The GA Is Expressed in Normal Human Thymus

Samples of human thymus were obtained from children undergoing cardiothoracic surgery and were analyzed for the presence of the GA by immunohistochemical analyses and RT-PCR. Thymic sections stained with mAb P1 exhibited positive staining, confirming that the GA is expressed in the thymus (Figure 1, A and B). Intense staining was observed in the perivascular space throughout the thymus, delineating vascular structures. Furthermore, numerous discrete areas of staining, which appeared to represent isolated thymic cells, were observed throughout the medulla (Figure 1B). No cortical staining was observed in any section. Thymic sections stained with isotype-matched (IgG1) control Ig exhibited no staining in the cortex or medulla (Figure 1, C and D). Sections of renal tissue from patients with Goodpasture’s disease demonstrated classic linear staining along the GBM (data not shown), as described previously (3).

Because negative selection is thought to occur as a result of antigen presentation to developing thymocytes by thymic epithelial cells and thymic dendritic cells (28), we sought to define whether these cells were also capable of synthesizing the GA. RNA was extracted from whole thymus and from isolated thymic epithelial cells grown as thymic explants. The latter were confirmed to be totally pure epithelial cell cultures by positive staining with cytokeratin (100% of cells positive for cytokeratin). In RT-PCR with α3(IV)NC1-specific primers, α

Table 1. Characteristics of patients and their immunosuppressive treatment at the time of T cell isolation

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Clinical Features</th>
<th>Antibody Titer (%)<sup>b</sup></th>
<th>Creatinine Concentration (μM)</th>
<th>Cells</th>
<th>Treatment when Cells Were Obtained</th>
<th>Duration of Treatment (d)</th>
<th>Outcome</th>
<th>Survival (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ARF, PH</td>
<td>18</td>
<td>390</td>
<td>NF</td>
<td>OP, PEX, CYC, OP</td>
<td>7</td>
<td>R</td>
<td>A (28)</td>
</tr>
<tr>
<td>2</td>
<td>ARF</td>
<td>45</td>
<td>DD</td>
<td>F</td>
<td>PEX, OP, CYC</td>
<td>10</td>
<td>DD</td>
<td>D (135)</td>
</tr>
<tr>
<td>3</td>
<td>ARF</td>
<td>80</td>
<td>DD</td>
<td>NF</td>
<td>None</td>
<td>7</td>
<td>DD</td>
<td>A (21)</td>
</tr>
<tr>
<td>4</td>
<td>ARF</td>
<td>60</td>
<td>DD</td>
<td>F</td>
<td>PEX, OP, CYC</td>
<td>2</td>
<td>DD</td>
<td>D (18)</td>
</tr>
<tr>
<td>Convalescence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>None</td>
<td>0</td>
<td>150</td>
<td>NF</td>
<td>OP</td>
<td>360</td>
<td>CRF</td>
<td>A (28)</td>
</tr>
<tr>
<td>3</td>
<td>PH</td>
<td>0</td>
<td>174</td>
<td>NF</td>
<td>None</td>
<td>230</td>
<td>DD</td>
<td>A (21)</td>
</tr>
<tr>
<td>5</td>
<td>None</td>
<td>0</td>
<td>132</td>
<td>NF</td>
<td>None</td>
<td>(10 yr)</td>
<td>CRF</td>
<td>A (160)</td>
</tr>
<tr>
<td>6</td>
<td>None</td>
<td>0</td>
<td>125</td>
<td>NF</td>
<td>None</td>
<td></td>
<td>R</td>
<td>A (125)</td>
</tr>
<tr>
<td>7</td>
<td>None</td>
<td>0</td>
<td>125</td>
<td>NF</td>
<td>None</td>
<td></td>
<td>R</td>
<td>A (120)</td>
</tr>
</tbody>
</table>

^a ARF, acute renal failure; PH, pulmonary hemorrhage; DD, dialysis-dependent; MP, pulsed methylprednisolone; OP, orally administered prednisolone; CYC, orally administered cyclophosphamide; PEX, plasma exchange; R, recovery; CRF, chronic renal failure; F, frozen; NF, not frozen; A, alive; D, died.

^b Normal range, <15%.
A clear band was amplified from both whole-thymus RNA and thymic epithelial cell RNA (Figure 2). The positive control sample was α3(IV)NC1 cDNA. The DNA products were confirmed to be α3(IV)NC1 by their exhibiting a pattern of bands identical to that of control α3(IV)NC1 cDNA after digestion with the appropriate restriction enzymes.

Figures 1. (A) Immunohistochemical analysis of human thymic tissue stained with monoclonal antibody (mAb) P1, showing staining in the perivascular spaces throughout the thymus, delineating vascular structures (white arrows). (B) High-power view of the thymic medulla stained with mAb P1, revealing numerous discrete areas of staining throughout the medulla, suggesting isolated thymic epithelial cells (white arrows). (C) Control section of thymus stained with an isotype-matched (IgG1) control antibody, revealing no positive staining. (D) High-power view of the thymic medulla stained with an isotype-matched (IgG1) control antibody, revealing no positive staining. Magnifications: ×200 in A and C; ×400 in B and D.

Frequencies of GA-Specific T Cells Are Elevated in Acute Disease and Decrease with Time

All patients and one-half of the healthy control subjects expressed DR15 and/or DR4 HLA class II alleles, with which the disease is strongly associated (17). Three patients were prospectively monitored for up to 1 yr. Cell isolation and enrichment from blood samples or frozen PBMC were successfully performed in all cases. After cell purification, flow cytometry demonstrated that CD4+ cells represented 88 to 95% of all CD3+ cells. APC were enriched such that the majority of the cells were positive for DR antigens, with <10% of cells staining for CD3 (Figure 3).

The frequencies of T cells proliferating in response to CS-GBM, recombinant α3(IV)NC1, tetanus toxoid, and autologous APC alone were calculated (as summarized in Table 2). The frequencies for CS-GBM varied from 1:10,000 to 1:123,000 and those for recombinant α3(IV)NC1 varied from 1:6289 to 1:65,359 during acute disease. However, the AMLR also varied considerably in both control subjects and patients...
Three novel observations are described here. First, significantly elevated frequencies of CD4+ T cells specific for α3(IV)NC1 were detected in patients at the time of acute Goodpasture’s disease. Second, the frequencies of autoreactive T cells steadily decreased with time. Third, expression of α3(IV)NC1 was clearly detectable, by immunocytochemical and PCR analyses, in the normal human thymus.

The autoantigen specificity of B cells in this disease is well established and is highly conserved among patients (4,23). In contrast, definition of the antigen specificity of autoreactive T cells has been elusive. This has led to uncertainty regarding whether the determinants recognized by T cells are derived from the α3(IV)NC1 domain or whether they are located on another protein that is internalized with α3(IV)NC1 by antigen-specific B cells. The results described here suggest that this molecule is a relevant autoantigen in Goodpasture’s disease. Clearly, these findings do not exclude the possibility of there being T-cell epitopes in other elements of the GBM. However, the demonstration of increased frequencies of T cells that are reactive with this molecule justifies further investigation of how the antigen is processed and presented, particularly by the DR alleles that are associated with disease susceptibility.

Although significantly increased frequencies for α3(IV)NC1 were detected during acute disease, in comparison with control values, the absolute frequencies were low. Similar frequencies have been reported for autoreactive T cells in other autoimmune diseases (29). These frequencies can be contrasted with the frequencies measured after immunization against typical exogenous antigens, such as tetanus toxoid, which usually range from 1:1000 to 10,000 (30). There are several possible explanations for the small numbers of T cells detectable in peripheral blood. One possibility is that most of the autoreactive T cells are sequestered in the diseased organs and the draining lymph nodes. This possibility is difficult to address in patients. However, in mouse models of allograft rejection, it seems that reactivity in circulating T cells reflects events in the graft itself (31,32).

A second possibility, which is favored by our data, is that most autoantigen-specific T cells are deleted in the thymus. It was recently demonstrated that a number of autoantigens are expressed in the thymus, and it is becoming clear that the thymus may present a vast array of self-proteins, including those that are sequestered or have limited tissue distribution.
Levels of expression of these autoantigens were recently demonstrated to be inversely correlated with a predisposition to develop autoimmune diseases (33,36,37). Therefore, susceptibility to autoimmunity may be partly related to a capacity to centrally delete autoreactive T cells (38,39), and this capacity may be related to the level of thymic autoantigen expression. Despite the process of negative selection, there is evidence that, in certain autoimmune diseases, self-reactive T cells escape thymic deletion through low-avidity interactions with thymic cells expressing the autoantigen (22).

We have demonstrated, at the mRNA and protein levels, that the autoantigen is expressed in the thymus, specifically in thymic epithelial cells. These cells are known to be important in antigen presentation to developing thymocytes during negative selection (28). Therefore, an antigen with such distribution would be expected to be shed or packaged (in exosomes) and taken up by neighboring cells to be processed and presented in association with class II MHC on the cell surface. This process would enable central deletion of high-avidity autoreactive T cells during development of the immune repertoire (40,41). We have not been able to compare the levels of thymic GA expression in patients and control subjects, and there remains the possibility that patients may be deficient in this expression and may thus fail to delete autoreactive T cells.

The T-cell frequencies for CS-GBM, which contains many different potential antigens, were the same for patients and control subjects. This finding is reminiscent of the data from proliferation assays that we reported previously; proliferation in response to affinity-purified GBM preparations was observed in 50% of healthy control subjects (19). It is also in keeping with other reports of autoreactive cells in healthy individuals (42). However, there was a significantly increased frequency of T cells reactive with the specific autoantigen /H92513(IV)NC1 in patients at presentation, compared with control subjects. The reduction in /H92513(IV)NC1-specific T-cell frequencies among patients with time is not simply attributable to concurrent immunosuppressive treatment, because the highest T-cell frequencies were observed for patients undergoing heavy immunosuppressive regimens and lower frequencies were observed for patients receiving minimal or no immunosuppressive therapy and control subjects. Furthermore, for patient 1, the frequency index for tetanus toxoid was markedly elevated during convalescence, compared with presentation, whereas the frequency index for /H92513(IV)NC1 decreased during the same period. Finally, the T-cell frequencies for recombinant /H92513(IV)NC1 are not simply related to the expression system used to generate the antigen, because others have demonstrated that it is only the specific /a3 (and /a4) chains generated

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>1/Frequency For AMLR</th>
<th>1/Frequency For CS-GBM</th>
<th>CS-GBM-FI</th>
<th>1/Frequency For /a3(IV)NC1</th>
<th>/a3(IV)NC1-FI</th>
<th>1/Frequency For TT</th>
<th>TT-FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>39,370</td>
<td>9,950</td>
<td>3.96</td>
<td>ND</td>
<td>ND</td>
<td>17,492</td>
<td>2.25</td>
</tr>
<tr>
<td>2</td>
<td>159,489</td>
<td>93,897</td>
<td>1.70</td>
<td>65,359</td>
<td>2.44</td>
<td>70,423</td>
<td>2.26</td>
</tr>
<tr>
<td>3</td>
<td>156,006</td>
<td>123,625</td>
<td>1.26</td>
<td>58,997</td>
<td>2.64</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>9,346</td>
<td>4,785</td>
<td>1.95</td>
<td>6,289</td>
<td>1.49</td>
<td>9,217</td>
<td>1.01</td>
</tr>
<tr>
<td>Convalescent, <1 yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>31,847</td>
<td>12,837</td>
<td>2.48</td>
<td>16,340</td>
<td>1.95</td>
<td>1,942</td>
<td>16.4</td>
</tr>
<tr>
<td>3</td>
<td>6,640</td>
<td>ND</td>
<td>ND</td>
<td>5,782</td>
<td>1.15</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>10,972</td>
<td>8,703</td>
<td>1.26</td>
<td>5,298</td>
<td>2.07</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Convalescent, 10 yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12,531</td>
<td>24,096</td>
<td>0.52</td>
<td>15,873</td>
<td>0.79</td>
<td>14,535</td>
<td>0.86</td>
</tr>
<tr>
<td>7</td>
<td>26,316</td>
<td>22,124</td>
<td>1.19</td>
<td>23,202</td>
<td>1.13</td>
<td>21,277</td>
<td>1.24</td>
</tr>
<tr>
<td>8</td>
<td>62,993</td>
<td>105,794</td>
<td>0.59</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>82,497</td>
<td>58,384</td>
<td>1.41</td>
<td>123,780</td>
<td>0.67</td>
<td>7,601</td>
<td>10.9</td>
</tr>
<tr>
<td>2</td>
<td>12,272</td>
<td>6,602</td>
<td>1.85</td>
<td>14,714</td>
<td>0.83</td>
<td>2,724</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>36,653</td>
<td>35,146</td>
<td>1.04</td>
<td>36,653</td>
<td>1.0</td>
<td>4,587</td>
<td>8.0</td>
</tr>
<tr>
<td>4</td>
<td>56,180</td>
<td>23,697</td>
<td>2.37</td>
<td>37,594</td>
<td>1.49</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>21,298</td>
<td>ND</td>
<td>ND</td>
<td>16,495</td>
<td>1.29</td>
<td>2,651</td>
<td>8.03</td>
</tr>
<tr>
<td>6</td>
<td>8,479</td>
<td>2,686</td>
<td>3.16</td>
<td>6,934</td>
<td>1.22</td>
<td>2,438</td>
<td>3.48</td>
</tr>
<tr>
<td>7</td>
<td>42,478</td>
<td>31,249</td>
<td>1.35</td>
<td>ND</td>
<td>ND</td>
<td>6,622</td>
<td>6.4</td>
</tr>
<tr>
<td>8</td>
<td>68,475</td>
<td>37,115</td>
<td>1.84</td>
<td>ND</td>
<td>ND</td>
<td>11,120</td>
<td>6.16</td>
</tr>
<tr>
<td>9</td>
<td>29,700</td>
<td>77,038</td>
<td>0.38</td>
<td>ND</td>
<td>ND</td>
<td>9,284</td>
<td>3.05</td>
</tr>
</tbody>
</table>

a AMLR, autologous mixed lymphocyte reaction; CS-GBM, collagenase-solubilized glomerular basement membrane; /a3(IV)NC1, /a3 chain of type IV collagen; FI, frequency index; TT, tetanus toxoid; ND, not done.
poor long-term regulation of autoreactive T cells and thus, after
speculate that, for these patients experiencing relapses, there was
rence has been observed, albeit rarely (5,46). It is tempting to
been sufficient to regulate T-cell autoreactivity. Disease recur-
tients all received immunosuppressive therapy, which may have
decrease in antibody levels with time. Interestingly, our pa-
frequency during periods of active disease. With time, these cells
escape thymic deletion in patients and are observed at increased
the presence of the GA in the thymus, autoreactive T cells do
frequency of autoreactive T cells. Further investigations into the
mechanisms underlying the loss of regulation of α3(IV)NC1-
specific autoreactive T cells, their epitope specificity, and the
basis of HLA-DR-linked disease susceptibility are required before
the pathogenesis of this disease is sufficiently well understood for
the design of antigen-specific immunotherapy.

Acknowledgments

Drs. Salama, Chaudhry, and Eren are Medical Research Council
Clinical Training Fellows. Dr. Ryan was supported by a grant from the
Viviann Philpott Research Fund. We are very grateful to Prof. Mary
Ritter for critical review of the manuscript and subsequent discussions.

References

1. Morrison KE, Mariyama M, Yang-Feng TL, Reeder ST: Se-
quence and isolation of a partial cDNA encoding the human α3
2. Turner AN, Mason PJ, Brown R, Fox M, Povey S, Rees AJ,
Pusey CD: Molecular cloning of the human Goodpasture antigen
demonstrates it to be the α3 chain of type IV collagen. *J Clin
Invest* 89: 592–601, 1992
3. Cashman SJ, Pusey CD, Evans DJ: Extraglomerular distribution
4. Derry CJ, Dunn MJ, Rees AJ, Pusey CD: Restricted specificity of
the autoantibody response in Goodpasture’s syndrome demon-
strated by two dimensional Western blotting. *Clin Exp Immunol
86*: 457–463, 1991
5. Levy J, Lachmann RH, Pusey CD: Recurrent Goodpasture’s
6. Turner AN, Rees AJ: Anti-glomerular basement membrane dis-
ease. In: *Rapidly Progressive Glomerulonephritis*, edited by Pu-
108–124
7. Lerner RA, Glassock RJ, Dixon FJ: The role of anti-glomerular
basement membrane antibody in the pathogenesis of human
8. Stebly RW: Anti-glomerular basement membrane glomerulo-
9. Sado Y, Naito I, Oigakagi T: Transfer of anti-glomerular base-
ment membrane antibody-induced glomerulonephritis in inbred
rats with isologous antibodies from the urine of nephritic rats.
J Pathol 158: 325–332, 1989
10. Peters DK, Rees AJ, Lockwood CM, Pusey CD: Treatment and
prognosis in antibasement membrane antibody-mediated nephri-
12. Kalluri R, Danoff TM, Okada H, Neilson EG: Susceptibility to anti-
glomerular basement membrane disease and Goodpasture syndrome is

in such an expression system that are capable of inducing
disease in experimental models (43–45). Furthermore, control
subjects exhibited no detectable frequencies for recombinant
α3(IV)NC1.

When these data are considered together, it seems that, despite
the presence of the GA in the thymus, autoreactive T cells do
escape thymic deletion in patients and are observed at increased
frequency during periods of active disease. With time, these cells
decrease in number, possibly as a result of regulation or deletion
(39). This may in part explain the lack of disease recurrence and
the decrease in antibody levels with time. Interestingly, our pa-
tients all received immunosuppressive therapy, which may have
been sufficient to regulate T-cell autoreactivity. Disease recur-
rence has been observed, albeit rarely (5,46). It is tempting to
speculate that, for these patients experiencing relapses, there was
poor long-term regulation of autoreactive T cells and thus, after
immunosuppressant withdrawal or because of other triggers, dis-
ease recurred. One such patient, who had successfully undergone
transplantation, experienced relapse only after withdrawal of im-
unosuppressive therapy (46). Another patient experienced re-

telope with continued smoking (5). Indeed, for one of our current
patients (patient 5), the frequency of α3(IV)NC1-autoreactive T
cells has remained high 1 yr after presentation, despite the fact that
the patient is free of disease, with undetectable autoantibody
levels. Longer follow-up periods will allow us to monitor whether
the patient experiences relapse or exhibits a decrease in the fre-
quency of autoreactive T cells. Further investigations into the
mechanisms underlying the loss of regulation of α3(IV)NC1-
specific autoreactive T cells, their epitope specificity, and the
basis of HLA-DR-linked disease susceptibility are required before
the pathogenesis of this disease is sufficiently well understood for
the design of antigen-specific immunotherapy.

Access to UpToDate on-line is available for additional clinical information at http://www.jasn.org/