Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases

Jennifer L. Huang,* Adrian S. Woolf,† Maria Kolatsi-Joannou,* Peter Baluk,‡ Richard N. Sandford,§ Dorien J.M. Peters, Donald M. McDonald,¶ Karen L. Price,* Paul J.D. Winyard,* and David A. Long*

*Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom; †Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom; ‡Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, California; §Academic Department of Medical Genetics, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; and ¶Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands

ABSTRACT

Polycystic kidney diseases (PKD) are genetic disorders characterized by progressive epithelial cyst growth leading to destruction of normally functioning renal tissue. Current therapies have focused on the cyst epithelium, and little is known about how the blood and lymphatic microvasculature modulates cystogenesis. Hypomorphic Pkd1nl/nl mice were examined, showing that cystogenesis was associated with a disorganized pericystic network of vessels expressing platelet/endothelial cell adhesion molecule 1 and vascular endothelial growth factor receptor 3 (VEGFR3). The major ligand for VEGFR3 is VEGFC, and there were lower levels of Vegfc mRNA within the kidneys during the early stages of cystogenesis in 7-day-old Pkd1nl/nl mice. Seven-day-old mice were treated with exogenous VEGFC for 2 weeks on the premise that this would remodel both the VEGFR3− pericystic vascular network and larger renal lymphatics that may also affect the severity of PKD. Treatment with VEGFC enhanced VEGFR3 phosphorylation in the kidney, normalized the pattern of the pericystic network of vessels, and widened the large lymphatics in Pkd1nl/nl mice. These effects were associated with significant reductions in cystic disease, BUN and serum creatinine levels. Furthermore, VEGFC administration reduced M2 macrophage pericystic infiltrate, which has been implicated in the progression of PKD. VEGFC administration also improved cystic disease in Cys1cpk/cpk mice, a model of autosomal recessive PKD, leading to a modest but significant increase in lifespan. Overall, this study highlights VEGFC as a potential new treatment for some aspects of PKD, with the possibility for synergy with current epithelially targeted approaches.

Received September 4, 2014. Accepted March 11, 2015.
Published online ahead of print. Publication date available at www.jasn.org.

Correspondence: Dr. David A. Long, Developmental Biology and Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK. Email: d.long@ucl.ac.uk

Copyright © 2016 by the American Society of Nephrology

Polycystic kidney diseases (PKD) are genetic disorders, usually caused by mutations affecting proteins located in primary cilia and other regions within epithelial cells.1 Epithelial turnover, adhesion, secretion, polarity, and ciliary functions are altered in PKD and therapies have predominantly targeted these processes.1 Much less is known about how the blood and lymphatic microvasculature surrounding kidney tubules might modulate cystogenesis. Previous studies using corrosion casting and angiography show that the vessels surrounding cysts in patients with autosomal dominant PKD are tortuous, abnormally patterned, and dilated.2–3 Two further studies have blocked vascular endothelial growth factor A (VEGFA) signaling, a potent pro-angiogenic factor, in a non-orthologous rat PKD model but gave contradictory results and did not examine the effect of this intervention on the microvasculature.4,5

We examined the blood and lymphatic microvasculature in Pkd1nl/nl mice, which carry two hypomorphic alleles of Pkd1, the mouse homolog of the gene most commonly mutated in human autosomal dominant PKD. Small cysts were found in the kidneys of 1-day-old Pkd1nl/nl mice, which became more prominent 1 week postnatally; larger cysts were observed at 3 weeks, which reached a maximum at 5 weeks of age (Figure 1, A–E). In wild-type mice, there was a fine reticular network of vessels around kidney tubules as
Figure 1. Disorganization of the renal microvasculature in $\text{Pkd}^{1\text{wt/wt}}$ mice. (A–E) Histology of kidneys obtained from $\text{Pkd}^{1\text{wt/wt}}$ and $\text{Pkd}^{1\text{nl/nl}}$ mice. Representative images of immunohistochemical staining for CD31 in the kidney of a 1-day-old $\text{Pkd}^{1\text{wt/wt}}$ mouse (F) and $\text{Pkd}^{1\text{nl/nl}}$ mouse (G) showing the microvasculature surrounding the tubules (*). Staining for VEGFR3 in 1-day-old $\text{Pkd}^{1\text{wt/wt}}$ (H) and $\text{Pkd}^{1\text{nl/nl}}$ (I) mouse kidneys. Note that the CD31 and VEGFR3 frames shown for $\text{Pkd}^{1\text{wt/wt}}$ and $\text{Pkd}^{1\text{nl/nl}}$ mice are not of the same section. (J–M) Representative
identified by immunohistochemistry for a pan-endothelial marker, platelet/endothelial cell adhesion molecule 1 (CD31) (Figure 1, F and J). In 1-day-old littermate Pkd1nl/nl mice there was an increase in the CD31+ area of noncystic renal tissue (25.7% ± 4.9 and 38.9% ± 0.7 in Pkd1wt/wt and Pkd1nl/nl, respectively; P < 0.05, n = 4/group) but no changes in the pattern of these vessels compared with Pkd1wt/wt mice (Figure 1G). At 3 weeks of age, the pattern of CD31+ vessels was disrupted in Pkd1nl/nl mice, with clusters of tortuous vessels around cysts (Figure 1K) and an increased percentage area compared with Pkd1wt/wt animals (Supplemental Table 1). Despite the increased relative area occupied by the vessels, proliferating (CD31+/Ki67+) endothelial cells per unit area were significantly reduced in polycystic kidneys (Supplemental Table 1).

Lymphatics were identified using a panel of markers including VEGF receptor 3 (VEGFR3), podoplanin, lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) and prospero homeobox 1 (PROX1). All four proteins colocalized in large intrarenal perivascular lymphatics, allowing us to modulate both of these vessel types. First, we examined endogenous Vegfc in Pkd1nl/nl kidneys and found a significant decrease in Vegfc mRNA levels at day 7 (P < 0.01) but no difference at day 14 or 21 compared with Pkd1wt/wt mice (Figure 2A). We then provided exogenous VEGFC to 7-day-old Pkd1wt/wt mice by administering 100 ng/g body wt of recombinant VEGFC or vehicle intraperitoneally every day for 2 weeks (Figure 2B), a period when there is rapid growth in the size of Pkd1nl/nl kidneys (Supplemental Figure 2). This dose has been used for VEGFA to promote renal angiogenesis and a higher dose (200 ng/g body wt) of VEGF enhances VEGFR3 phosphorylation in vivo. We found that VEGF administration enhanced tyrosine phosphorylation of VEGFR3 in Pkd1nl/nl kidneys versus those given PBS (Figure 2C).

VEGFC-treated Pkd1nl/nl mice had reduced severity of PKD as assessed by the external appearance of kidneys at autopsy (Figure 2D) and a significant approximate halving in kidney/body weight ratio (Figure 2E). Pkd1nl/nl mice receiving VEGFC had similar body weights to those given vehicle but their absolute kidney weights were about half that of the untreated PKD littermates (1.2 g ± 0.3 and 0.6 g ± 0.2 in Pkd1nl/nl given PBS and VEGFC, P < 0.05). Kidneys of VEGFC-treated animals contained less prominent cysts by histology (Figure 2, F–I) with significantly smaller average cyst size (Figure 2J). VEGFC did not alter BUN and creatinine (Figure 2, K and L) concentrations in Pkd1wt/wt animals; both of these parameters were strikingly increased in Pkd1nl/nl mice given PBS, which was attenuated by VEGFC treatment. As a potential confounder, BUN can be lowered if there is liver damage but VEGFC did not affect plasma alanine aminotransferase levels (Figure 2M). In addition, VEGFC administration did not alter the histology of the heart, lung, liver and spleen (Figure 2, N–U).

Therapy with VEGFC had two effects on the vasculature in Pkd1nl/nl mice. First, it increased the numbers of VEGFR3+/Ki67+ and CD31+/Ki67+ proliferating endothelial cells per unit area (Supplemental Table 1). The pattern (Figure 3, A–F) and percentage area (Supplemental Table 1) of the CD31+ and VEGFR3+ vessels in Pkd1nl/nl mice treated with VEGFC was more like that observed in normal kidneys. Second, VEGFC significantly increased the transverse area of the larger LYVE1+/Prox1+ lymphatics in the kidney (Supplemental Table 1). However, VEGFC treatment did not significantly alter endogenous kidney mRNA levels of Vegfa, Vegfc, Vegfr2, or Vegfr3 or protein levels of VEGFC (Supplemental Figure 3).

Next, we examined if these changes in the blood and lymphatic microvasculature of CD31 and VEGFR3 immunohistochemistry in 3-week-old Pkd1wt/wt and Pkd1nl/nl mouse kidneys. (N–U) Double-labeling for CD31 and VEGFR3 in the same sections of Pkd1wt/wt and Pkd1nl/nl mice demonstrated colocalization of both markers on vessels surrounding the kidney tubules. Bar is 50 μm in each panel, g, glomerulus.
Figure 2. Administration of VEGFC to Pkd1^{−/−} mice improves kidney histology and function. (A) Quantitative RT-PCR comparing mRNA levels of Vegfc in Pkd1^{+/+} and Pkd1^{−/−} mouse kidneys at 7, 14, and 21 days after birth. All data are presented relative to levels in Pkd1^{+/+} kidney at day 7 where average expression was given an arbitrary value of 1. (B) Outline of experimental strategy. (C) VEGFR3 phosphorylation levels in the kidneys of Pkd1^{−/−} mice given either vehicle or VEGFC. (D) Representative images showing overall appearance of
might correlate with the inflammatory milieus in PKD by examining CD206/Mrc1+ alternatively activated macrophages (M2), which have been functionally implicated in PKD cyst growth.15,16 VEGFC significantly reduced these cells in Pkd1nl/nl mice (Figure 3, G–J). Treatment also led to significantly lower renal Mrc1 levels in Pkd1nl/nl mice (Figure 3K) although the reduction of another M2 marker, arginase 1 (Arg1), did not reach significance (Figure 3L). In contrast, none of the M1 macrophage markers tested were affected by VEGFC administration (Figure 3, M and N). Similarly, the extent of fibrosis was unaffected, as assessed by mRNA for collagen type III, \textalpha{}1 (Col3a1) (Figure 3O).

The normalization of the pericystic network of vessels alongside reduced inflammatory macrophages suggest that the microvasculature is the prime target of VEGFC therapy, but the same results might be generated as secondary effects if the growth factor acted directly on cystic epithelia. However, VEGFC did not alter proliferation in small cysts (<0.01 mm2; 29±6 versus 33±3 proliferating nuclei/500 cells in Pkd1nl/nl mice treated with PBS and VEGFC) with few Ki67+ cells detected in cysts larger than this in all experimental groups. In contrast to previous reports,3,4,17 we could not detect the VEGFC receptors VEGFR2 or VEGFR3 on the cyst epithelia by immunohistochemistry in multiple animals; contrasting markedly with clear expression in vessels on the same section (Figure 3, P and Q). Hence, we conclude that the prime effects of VEGFC are likely to be vascuarly targeted, although we cannot fully rule out epithelial effects that could be evaluated using isolated cyst models. It will be worthwhile re-examining the VEGFA pathway in future experiments. Previous studies were performed in Han:SPRD rats, a model which does not harbor a human PKD-relevant mutation,18 with anti-VEGFA antibody causing worse renal function and enhanced kidney injury in one laboratory8 whereas ribozymes to block VEGFR1 and VEGFR2 reduced cyst volume density and improved renal function in another.4 An explanation for these findings is that simply blocking VEGFA is known to cause profound glomerular changes19 and the effects on cystic tubules could be secondary to these. The blockade of VEGFR2 by ribozymes may favor endogenous VEGFC binding to VEGFR3+ vessels, which our study has shown to be beneficial.

We questioned whether the positive effects of VEGFC are specific for Pkd1 mutants or have more widespread effects on cystogenesis by using mice with congenital polycystic kidneys (Cys1cpk/cpk mice). This model is nonorthologous, but provides a rapid phenocopy of the pathology of human autosomal recessive PKD with massive collecting duct cystogenesis leading to uremic death by 3 weeks of age.20 First, we examined 2-week-old Cys1cpk/cpk mice and found that the CD31+ and VEGFR3+ pericystic network of vessels were also disorganized compared with Cys1+/+ mice and that both markers colocalized (Supplemental Figure 4). The relative area occupied by the VEGFR3+ vessels was significantly increased in Cys1cpk/cpk mice compared with wild-type littermates with a tendency for this to be the case for CD31+ vessels (Supplemental Table 2). VEGFC was again provided daily from postnatal day 7 to day 14 (Figure 4A); a phase where there is rapid growth in the size of Cys1cpk/cpk kidneys (Supplemental Figure 3). VEGFC administration to Cys1cpk/cpk mice led to an improvement in gross morphology (Figure 4B) and a significant reduction in kidney/body weight ratio compared with those treated with PBS (Figure 4C). Cys1cpk/cpk receiving VEGFC had similar body weights to those given PBS but had a significantly lower kidney weight (0.6 g±0.1 and 0.5 g±0.1 in Cys1cpk/cpk mice treated with PBS and VEGFC, \textit{P}<0.05). VEGFC treatment, did not, however, affect BUN concentration (Figure 4D). Kidneys of VEGFC-treated Cys1cpk/cpk mice had less prominent cysts (Figure 4, E–H) with a significantly smaller average cyst size (Figure 4I). VEGFC increased the number of proliferating CD31+ and VEGFR3+ vessels in Cys1cpk/cpk mice (Supplemental Table 2), which was associated with a reduction in the VEGFR3+ percentage area (Supplemental Table 2). VEGFC administration did not alter the average cross-sectional area of the larger LYVE1+/Prox1+ lymphatics in Cys1cpk/cpk mice. Finally, VEGFC treatment led to a modest but significantly extended survival of 1 week in Cys1cpk/cpk mice (Figure 4J).

In conclusion, this study shows that an abnormal pericystic network of vessels is present from the early stages of PKD and becomes more disorganized as cystogenesis progresses. We demonstrated that intervening with VEGFC enhances the phosphorylation of VEGFR3, which has been shown to lead to the proliferation, migration and rearrangement of vessels.21 VEGFC treatment also reduces the severity of PKD, which is associated with improving the pattern of the pericystic vascular network, widening the large lymphatics and clearing inflammatory cells. The combination of these effects may have the potential to reduce edema, which is a regular feature of PKD.22 We do not yet understand why the kidney microvasculature is abnormal in PKD. One reason is that the vessels are...
simply distorted as cysts grow. Alternatively, there may be intrinsic defects in the vasculature, as has been reported in the skin lymphatics in Pkd1-null and Pkd2-null mice, which may explain why the effects of VEGFC are more prominent in the Pkd1null mice than Cys1cpk/cpk. Other studies have also demonstrated a role for Pkd1 in zebrafish lymphatic vessel morphogenesis.

Future experiments should investigate VEGFC and other vascular growth factors perhaps in combination with epithelially targeted treatments. Ideally, these studies should include a slow-onset orthologous PKD1 model such as the Pkd1RC/RC mouse, since both of the models examined here progress very quickly, which did not allow the examination of multiple stages of cyst initiation, progression and end-stage PKD. In addition, detailed studies need to be performed to determine optimal doses and timing periods for VEGFC treatment. Combining epithelial and
endothelial therapies may generate the effective treatments urgently needed for these important human diseases.

CONCISE METHODS

Animal Models

Cys1cpk+/+ (The Jackson Laboratory, Bar Harbor, ME) and Pkd1nl/wt heterozygous mice6 were bred to generate wild-type and homozygous littersmates for analysis. Cys1cpk+/+ mice were maintained on the C57BL/6J background for at least 25 generations and Pkd1nl/wt mice were maintained on CD1 background for more than ten generations. In some experiments, wild-type and homozygous Cys1 and Pkd1 mice were injected with either 100 ng/g body wt of recombinant VEGFC (R&D Systems Europe, Abingdon, UK) or vehicle (PBS) intraperitoneally daily. The daily volume administered was 20 μl, equivalent to providing 200 ml PBS to an adult human per day, or 20 ml/day to an infant. All animal procedures were approved by the UK Home Office.

Assessment of Renal Function

Blood was collected and BUN was assessed using a commercially available assay kit, validated in mice.25 Creatinine concentration was measured using isotope dilution electrospray mass spectrometry. Alanine aminotransferase was assessed using the Vitros 5600 clinical chemistry analyzer (Ortho Clinical Diagnostics, High Wycombe, UK).
Histologic Analysis and Immunohistochemistry

After anesthesia, the vasculature was perfused to ensure optimal tissue preservation and maintain vessel patency with 1% paraformaldehyde in PBS from a cannula inserted through the left ventricle into the aorta. Tissues were removed, fixed further by immersion in 1% paraformaldehyde for another 1 hour, washed in PBS, dehydrated and embedded in wax; then 5-μm sections were cut. Some sections were stained with periodic acid–Schiff reagent and hematoxylin to assess the overall histology. Pictures of whole stained kidneys were taken at low magnification under a dissecting microscope and the average area of individual cysts (defined as dilated tubules >0.01 mm² in cross-sectional area) was determined using ImageJ particle analysis (http://rsweb.nih.gov/ijs). ImmunoRatio and ImageJ software were used to quantify the area occupied by dilated tubules and 0.1% sodium azide for 1 hour at room temperature to block nonspecific binding. Sections were incubated with primary antibodies and visualized by confocal microscopy. Images of whole kidney sections from fluorescently labeled slides were obtained using an Axio Scan.Z1 (Carl Zeiss, Munich, Germany) and were then quantified in ImageJ.

The area of the kidney sections positive for vascular markers was calculated as a percentage of the total 4',6-diamidino-2-phenylindole+ area to circumvent any effects of cysts on the analyses. The numbers of proliferating CD31+ and VEGFR3+ vessels were counted and expressed as positive cell numbers/cm² of 4',6-diamidino-2-phenylindole area. To measure epithelial proliferation the number of Ki67+ cells was determined per 500 in at least 50 small cysts <0.01 mm²; larger sections >0.01 mm² were also assessed. The average area occupied by LYVE1+/Prox1+ vessels was measured by analyzing at least 20 vessels in each sample.

Immunoprecipitation and Western Blotting

Five hundred micrograms of protein from kidneys of Pkd1tm1mld mice that were given vehicle or VEGFC was isolated using RIPA buffer and incubated with Dynabead Protein G (Life Technologies, Paisley, UK) and 5 μg of VEGFR3 (R&D Systems) antibody. Bound protein was eluted, denatured and separated on SDS–8% polyacrylamide gels. After electrophoresing, proteins were detected using antibodies for phosphotyrosine (05–321, EMD Millipore, Billerica, MA) or VEGFR3 (R&D Systems). For the detection of endogenous VEGFC, 50 μg of kidney protein was separated, electrophorased and probed using a VEGFC antibody (sc-1881; Santa Cruz Biotechnology, Dallas, TX), Ki67 (ab6155; Abcam, Inc., Cambridge, UK), LYVE1 (AF2125, R&D Systems, Abingdon, Europe), podoplanin (ab11936; Abcam, Inc.), PROX1 (11–022; AngioBio, Del Mar, CA), VEGFR2 (AF644; R&D Systems), VEGFR3 (AF743; R&D Systems). Serial sections were used to determine colocalization of vascular and lymphatic markers. After washing in PBS-Trition, sections were incubated with appropriate Cy3, AlexaFluor594 and AlexaFluor488 secondary antibodies and visualized by confocal microscopy. Images of whole kidney sections from fluorescently labeled slides were obtained using an Axio Scan.Z1 (Carl Zeiss, Munich, Germany) and were then quantified in ImageJ.

In experiments when differences between two groups were evaluated, data were analyzed by Mann–Whitney U test (IBM SPSS, Chicago, IL). When three or more groups were assessed one-way ANOVA with least square difference post hoc test (IBM SPSS) was used. Survival analysis was presented using the Kaplan–Meier estimate and assessed by the log-rank test. Statistical significance was accepted at P<0.05.

ACKNOWLEDGMENTS

We thank UCL Biological Services, GOSH Chemical Pathology and Professor Neil Dalton (King’s College London) for their assistance with animal experiments, and alanine aminotransferase and creatinine measurements, respectively. We thank Professor Paul Riley (University of Oxford) and Professor Paul Gissen (UCL institute of Child Health) for helpful discussions regarding this work.

This work was supported by a studentship from Kids Kidney Research (to D.A.L., A.S.W., and P.J.D.W.), a project grant from Kidney Research UK (RP38/2013 to D.A.L. and P.J.D.W.) and a Bogue Research Fellowship to J.L.H. D.A.L. is supported by a Kidney Research UK Senior Non-Clinical Fellowship (SF1/2008) and a Medical Research Council New Investigator Award (MR/J003638/1). The contributions by Peter Baluk and Donald M. McDonald were supported in part by grants from the National Heart, Lung, and Blood Institute (P01-HL024136 and R01-HL059157) of the US National Institutes of Health. Karen L. Price is supported by the ICH/GOSH Biomedical Research Centre. Adrian S. Woolf was used to prepare cDNA and quantitative real-time PCR was performed for Arg1, Gld206, Cox31, iNOS, Mcp1, Vegfa, Vegfc, Vegr2, and Vegr3 on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories, Ltd., Hemel Hempstead, UK) using SsoAdvanced Supermix (Bio-Rad Laboratories, Ltd.) with hypoxanthine-guanine phosphoribosyltransferase (Hprt) as a house-keeping gene. Fold-changes in gene expression were determined by the 2−ΔΔCt method. Primer details are available on request.

Statistical analyses

All samples were assessed blinded to treatment. Data were presented as means±SEM. In experiments when differences between two groups were evaluated, data were analyzed by Mann–Whitney U test (IBM SPSS, Chicago, IL). When three or more groups were assessed one-way ANOVA with least square difference post hoc test (IBM SPSS) was used. Survival analysis was presented using the Kaplan–Meier estimate and assessed by the log-rank test. Statistical significance was accepted at P<0.05.
acknowledges grant support from the Manchester Biomedical Research Centre and the Medical Research Council (MR/K026739/1 and MR/L012707/1).

DISCLOSURES

J.L.H., P.D.W., and D.A.L. hold a patent related to therapies targeting the lymphatics in polycystic kidney disease.

REFERENCES