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Supplemental Material for Venkatareddy et al, JASN 2013. Estimating podocyte number 
and density using a single histologic section. 

Derivation of a quadratic equation relating apparent mean caliper diameter d, true mean 
caliper diameter D, section thickness T and nuclear shape k that can be adapted for 
spreadsheet calculations.  

It is well known that the average number of nuclei in a finite thickness section is given by the 
expression  

 

for a solid of arbitrary geometry (e.g. Hilliard, 1967) (36). To derive this expression, consider an 
arbitrary shaped object whose orientation is described by Euler angles  in a box cross 
sectional area  and length , aligned with the z-axis. (To remove box-edge effects we can formally 
identify the edges of the box to form a 3-torus.) Let the caliper diameter in the z direction be 

, which is a function of the object orientation. The probability that the object overlaps a 
rectangular section of the box thickness  and area  lying normal to the axis of the box is 

 

If the object is randomly oriented, we must average over all orientations and we recover the 
equation written above. 

 

Spherical nuclei. Let  be the total number of podocyte nuclei whose geometrical centers lie 
within a section area  and thickness  and volume . The nuclei are assumed to be 
randomly distributed within the section and have number density  

. 

Due to the finite thickness of the nucleus, some nuclei are themselves sectioned in the cutting 
process. First, we will assume that the nuclei are spherical with identical volumes. Nuclei whose 
geometrical centers lie within the section will have the true mean caliper diameter ( ) whereas 
nuclei whose centers lie within a nuclei radius above or below the section boundaries are still 
observed, but are observed to have sections of smaller diameter than the true mean caliper 
diameter. (See Supplemental Figure 1). 
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Supplemental Figure 1: Diagrammatic illustration for how spherical nuclei at the edge of the 
section whose centers lie above the section boundary will appear to have a smaller diameter than 
the true mean caliper diameter (D), while those whose centers lie within the tissue section will have 
true mean caliper diameters (D).  

It is straightforward to determine the mean observed diameter for this sub-population that are in this 
boundary region: 

, 

where  is the radius of the spherical nuclei ( ). Integration gives the expression: 

, 

where we have introduced the geometrical parameter . The average summed caliper 
diameter for all nuclei observed in a section includes both nuclei with centers lying within the 
volume of the section (numbering ) and nuclei in the boundary regions (numbering 

): 

 

If we divide this sum by the number of observed nuclei, we compute the apparent mean caliper 
diameter ( ), and  

. 

Eliminating the Ns in terms of the number density and dividing out common factors of number 
density and area can simplify this expression to: 

, 
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which is independent of the area and number density. This equation can be rearranged to give a 
quadratic equation , the true mean caliper diameter: 

. 

The observed mean caliper diameter (d) is smaller than the true mean caliper diameter ( ) due to 
the presence of the nuclei lying in the boundary region. This equation can be solved for the true 
diameter : 

, 

using the quadratic formula, keeping only the positive root.  

 

 

Ellipsoidal Nuclei. Next, we generalize the derivation to a more general case of ellipsoidal nuclei. 
We consider the quite realistic geometries of oblate and prolate spheroids: ellipsoids with equatorial 
lengths ( ) where . For a prolate spheroid,  whereas an oblate spheroid has 

. An equivalent sphere is defined as a sphere with a volume equal to that of the ellipsoid.  

 

 

Supplemental Figure 2: Oblate and prolate spheroids are defined as solids of rotation generated 
from ellipses. For a prolate spheroid A<C whereas an oblate spheroid has A>C.   

 

Ellipsoids have volume: 

. 

The radius of an equivalent sphere is therefore: 

. 



4 
 

 

For sections thicker than maximum diameter of the nuclei, the average sum of the caliper diameters 
of all observed nuclei can still be written  

 

where geometrical factor  is a dimensionless constant that depends on the shape of the solid, but 
not its physical size. This form is simply the result of dimensional analysis and the observation that 
this sum has both linear and constant terms in , the thickness of the section. (Note that the form is 
more complicated for  smaller than the largest caliper diameter of the nuclei.) For an oblate or 
prolate spheroid,  depends on the ratio  or equivalently . 

To compute  explicitly, we carried out a simulation to compute the average sum of the caliper 
diameter. In short: We generated a series of ellipsoids with , , varying A, centered at 
the origin. We approximated the boundary of the ellipse with roughly 1000 points. To average over 
orientations, we performed a Monte Carlo integration with  samples, rotating the ellipse 
to random orientations. We then scanned a segment-boundary plane along the z-axis and 
measured the sum of the caliper diameters of the resulting segmented ellipses. Using the equation 
quoted above, we varied the thickness of the section ( ) to determine , and then computed the 
constant offset (with respect to ) to determine . The computed values of  are shown in 
Supplemental Figure 3, Panel A and Supplemental Table 1. As a check, we both (i) recover the 
known value of  for the sphere and (ii) the known values of the true mean caliper diameter  for 
which there is an analytic expression (Supplemental Figure 3 Panel B) (36): 

 

 

where we have used eccentricity of the ellipse ( ) for which the spheroid is surface of revolution: 

 

 

(note that we have corrected a sign error in this definition from Hilliard, 1967) and defined  as the 
ratio of the spheroid axis  to the radius of the equivalent sphere : 

. 
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Supplemental Figure 3: Panel A: Geometical factor k as a function of ellipsoid shape. The ratio of 
the equitorial axis  to the radius of the equivalent sphere for an ellipse with axes ( ). 
Ellipsoids with , are prolate spheroids whereas ellipsoids with  are oblate 
spheroids. Geometrical factor  is maximized for the sphere, where  (red star). The 

dependence of  on geometry is not particularly strong meaning that small changes in the shape of 
the nuclei will not have a strong effect on the estimate of the true mean caliper diameter . Panel 
B: Mean caliper diameter in simulations compared with analytic results. There is an excellent match 
between the simulated mean caliper diameter (blue) and the theoretical expression (red). 
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Supplemental Table 1: Computed values of geometrical factor k for various spheroid geometries. 

 

Spheroid Geometry 
Parameter  

Geometrical 
factor  

0.50 0.28 

0.55 0.36 

0.60 0.45 

0.65 0.53 

0.70 0.60 

0.75 0.66 

0.80 0.72 

0.85 0.75 

0.90 0.78 

0.95 0.79 

1.00 0.79 

1.05 0.79 

1.10 0.78 

1.15 0.77 

1.20 0.76 

1.25 0.75 

1.30 0.74 

1.35 0.73 

1.40 0.72 

1.45 0.71 

1.50 0.70 

 


