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Joint longitudinal-survival model 
Outcome data for each patient were of two types: a time series of renal function measures 

(eGFR) and the time to the initiation of renal replacement therapy. Both are measures of a single 

underlying process, the progressive loss of renal function until end stage renal disease (ESRD) is 

reached. Variation among individuals in the rate of loss produces variation in time to ESRD. 

While the two outcomes can be analyzed independently, neither analysis uses all of the data. A 

regression model for the longitudinal eGFR measurements, such as a linear mixed effects model 

(LMM), treats the interruption of eGFR measurements by the onset of ESRD as missing data 

rather than an outcome. This biases trajectory estimates because it violates the assumption of 

missingness at random (MAR). A survival analysis for the time to ESRD, such as a Cox 

proportional hazard model, ignores all the information on eGFR trajectories of patients who do 

not reach ESRD during follow-up observation. 

A joint longitudinal-survival model uses both sources of information about the underlying 

process. The key advantages of this approach over separate analyses of the two outcome 

measures are bias reduction and gain in precision of estimates. The random effects formulation 

in the model takes the correlation of the two outcome measures into account.  

We use the implementation of a family of joint longitudinal-survival models for SAS NLMIXED 

procedure, tailored for use with eGFR data and time to ESRD. 

For the purpose of analysis, we specified the model as follows: 
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where  represents jth longitudinal observation in ith individual,  is subject’s, possibly 

censored time to event,  and  are vectors of covariates in longitudinal and survival 

processes, respectively, with associated vectors of fixed effects  and ,  is a design 



matrix formed by subset of columns of ,  are random effects in longitudinal process with 

covariance matrix ,  are proportionality (scaling) parameters corresponding to elements of , 

 is scale parameter in survival sub-model,  is residual variance in longitudinal sub-model and 

,  are residuals, conditionally independent of , in longitudinal and survival sub-models, 

respectively. 

The joint model assumes that subject-specific effects, such as random intercepts, slopes and 

quadratic terms (individual deviations from fixed effect predictions of baseline eGFR and rates 

of eGFR decline described by linear and quadratic function of time) are proportional to three 

components of the frailty term in survival (individual deviations of log-time to ESRD from the 

fixed effect-predicted log-time). Therefore an individual whose baseline eGFR is low, his renal 

function decline is fast or it accelerates will exhibit a short time to ESRD. On the other hand a 

patient whose baseline eGFR is high or eGFR decline is slow, or the decline decelerates will 

exhibit a long survival time. In other words, the joint model postulates that random effects 

describing a given subject’s propensity to an outlying eGFR profile propagate to having an 

outlying value of frailty in the hazard model. The model was fitted with a marginal maximum 

likelihood method using adaptive Gaussian quadrature for approximation of the integral over the 

random effects and trust region optimization technique, replaced by Newton-Raphson technique, 

when non-convergence was detected. 

Based on the Akaike information criterion, we chose a log-normal probability distribution for the 

observed time to ESRD over an exponential or Weibull parametric models. We performed 

residual diagnostics of the log-normal model using deviance residual plots against rank of 

survival time, and we also plotted conditional residuals and scaled marginal residuals from the 

longitudinal model against observation time. 


