Xu HH et al: MRTF-A epigenetically regulates renal fibrosis in diabetic nephropathy Supplemental material Supplemental figures: 15 Supplemental table: 1 **Fig.S1:** Wild type (WT) or MRTF-A deficient (KO) mice were fed with a high-fat diet (HFD) or a control diet (AL) for 16 weeks. (**A**) Body weight was measured before the mice were sacrificed for histology. N=5-10 mice for each group. (**B**, **C**) Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed as described under *Methods*. N=3-6 mice for each group (**D**) Expression of Col4a1 was assessed by qPCR. N=4 mice for each group. (**E**) Paraffin-embedded kidney sections were stained with periodic acid-Schiff (PAS). Mesangial index was calculated by dividing PAS-positive area by total glomerular area. N=4 mice for each group (**F**) Immunohistochemistry was performed with anti-CD3, anti-F4/80, or anti-CD45. N=4 mice for each group. (**G**) Immunohistochemistry was performed with anti-collagen type I. N=4 mice for each group. **Fig.S2**: Wild type (WT) or MRTF-A deficient (KO) mice were injected with STZ or vehicle (Vec) and sacrificed after 16 weeks. (**A**) ITT was performed as described under *Methods*. N=3-5 mice for each group (**B**) Urinary albumin excretion was measured as described under *Methods*. N=3-5 mice for each group. (**C**) Expression of Col4a1 was assessed by qPCR. N=4 mice for each group. (**D**) Paraffin-embedded kidney sections were stained with periodic acid-Schiff (PAS). (**E**) Immunohistochemistry was performed with anti-CD3, anti-F4/80, or anti-CD45. N=3-6 mice for each group. (**F**, **G**) Renal fibrosis was evaluated by picrosirius red and Masson's trichrome stainings and quantified by Image Pro. N=3 mice for each group. (**H**) Immunohistochemistry was performed with anti-collagen type I. N=3 mice for each group. (**I**) Expression of type I collagen in the kidneys was examined by qPCR. N=5 mice for each group. **Fig.S3:** (A) Collagen promoter luciferase constructs were transfected into HK-2 cells with or without MRTF-A followed by treatment with glucose. Data are expressed as relative luciferase unit (RLU). (B) Collagen promoter luciferase constructs were transfected into wild type (WT) or MRTF-A deficient (KO) MEF cells followed by treatment with glucose. Data are expressed as relative luciferase unit (RLU). N.S., no statistical significance (C) NRK-52E was transfected with MRTF-A siRNA or scrambled siRNA. MRTF-A expression was measured by qPCR and Western. | | | Fold Change (comparing to control group) Group 1 | | | |--|---|--|--|-------| | Position | Symbol | Fold Change | Comments | | | A01
A02 | Acta2
Agt | 0.2864
3.8593 | OKAY
B | | | N03
N04 | Akt1
Bcl2 | 1.5762
0.9816 | OKAY
OKAY | | | \ 05 | Bmp7 | 1.2669 | OKAY | | | 06
07 | Cav1
Ccl11 | 0.8633
2.6656 | OKAY
B | | | ·08 | Ccl12 | 1.8431 | OKAY | | | \09
\10 | Ccr2 | 1.4774
6.6572 | OKAY
A | | | \11 | Cebpb | 3.0664 | OKAY | | | N12
301 | Col1a2
Col3a1 | 0.4331
0.2618 | OKAY
OKAY | | | 302 | Ctgf | 0.8564 | OKAY | | | 303
304 | Cxcr4
Dcn | 0.8786
0.6535 | OKAY
OKAY | | | 305 | Edn1 | 0.6886 | OKAY | | | 306
307 | Egf
Eng | 1.6027
0.4585 | A
OKAY | | | 808 | Fasi | 0.4383 | C | | | 809 | Grem1 | 1.2652 | OKAY | | | 310
311 | Hgf
Ifng | 2.5321
0.2199 | OKAY
B | | | 112 | II10 | 0.1087 | В | | | 001 | II13
II13ra2 | 5.326
0.4202 | B
B | - | | 203 | II1a | 1.4942 | OKAY | | | 004
005 | II1b
II4 | 3.2264
0.3217 | OKAY
B | - | | 206 | II5 | 0.8752 | В | | | 07
08 | llk
Inhbe | 0.8369
0.3868 | OKAY
B | | | 009 | Itga1 | 1.0664 | OKAY | | | C10 | ltga2 | 0.8484 | OKAY | | | 011 | Itga3
Itgav | 1.3354
1.1209 | OKAY
OKAY | - | | 01 | ltgb1 | 1.1793 | OKAY | | | 002 | ltgb3
ltgb5 | 0.8077
1.4687 | OKAY
OKAY | - | | 004 | Itgb6 | 1.1381 | OKAY | | | 005 | ltgb8
Jun | 1.4247
1.3419 | OKAY
OKAY | - | | 007 | Lox | 0.5164 | OKAY | | | 008 | Ltbp1
Mmp13 | 0.7853
1.5288 | OKAY
OKAY | | | 010 | Mmp14 | 1.2718 | OKAY | | | 011 | Mmp1a | 2.5493 | OKAY | | | 012 | Mmp2
Mmp3 | 1.6445
0.4699 | OKAY
A | - | | 02 | Mmp8 | 0.3823 | OKAY | | | 03 | Mmp9
Myc | 0.5309
0.9717 | OKAY
OKAY |
 | | 05 | Nfkb1 | 1.2248 | OKAY | | | 06
07 | Pdgfa
Pdgfb | 0.7345
1.1305 | OKAY
OKAY | | | -08 | Plat | 1.376 | OKAY | | | E09
E10 | Plau | 1.6146
0.9634 | OKAY
C | | | 11 | Plg
Serpina1a | 0.9634 | C | | | 12 | Serpine1 | 1.0722 | OKAY | | | -01
-02 | Serpinh1
Smad2 | 1.2828
1.2608 | OKAY
OKAY | - | | -03 | Smad3 | 1.6185 | OKAY | | | -04
-05 | Smad4
Smad6 | 1.1698 | OKAY
OKAY |
 | | -06 | Smad7 | 1.5073 | OKAY | | | 07
08 | Snai1
Sp1 | 1.6818
1.4902 | B
OKAY | | | -09 | Stat1 | 1.7463 | OKAY | | | 10 | Stat6 | 1.3604
1.7116 | OKAY | | | 11 | Tgfb1
Tgfb2 | 1.7110 | OKAY
OKAY |
- | | 301 | Tgfb3 | 1.1346 | OKAY | | | 302
303 | Tgfbr1
Tgfbr2 | 1.502
1.5594 | OKAY
OKAY | - | | 304 | Tgif1 | 0.9524 | OKAY | | | 305
306 | Thbs1
Thbs2 | 1.2435
1.13 | OKAY
OKAY | _ | | 307 | Timp1 | 0.3729 | OKAY | | | 308
309 | Timp2 | 0.641
0.9255 | OKAY | | | 310 | Timp3
Timp4 | 0.9634 | OKAY
C |
 | | 311 | Tnf
Vogfa | 1.9686 | OKAY | - | | 612
101 | Vegfa
Actb | 0.9916
1.0929 | OKAY | - | | 102 | B2m | 0.893 | OKAY | | | 103
104 | Gapdh
Gusb | 1.4623
1.0247 | OKAY
OKAY | - | | 105 | Hsp90ab1 | 1.1973 | OKAY | | | 106
107 | MGDC
RTC | 0.9634
1.0292 | C
OKAY | - | | H08 | RTC | 1.0745 | OKAY | | | 109
110 | RTC
PPC | 1.1236
0.8813 | OKAY
OKAY | | | 111 | PPC | 0.874 | OKAY | | | 112 | PPC | 0.9256 | OKAY | | | nd is reas
hese data
the othe
nd reporte
his fold-cl | ne's average
onably low in
mean that
r sample sug
ed fold-chang
nange result | threshold cycle is relatively high (> 30) in either the cont
the other sample (< 30).
the gene!!! expression is relatively low in one sample an
goesting that the actual fold-change value is at least as I
pe result. The sample of the sample and t | d reasonably detected
arge as the calculated
afore, it is important to | | | evel is low
r relatively
his fold-cl | , in both cor
high (p > 0.
nange result | threshold cycle is relatively high (> 30), meaning that
trol and test samples, and the p-value for the fold-chang
05).
may also have greater variations; therefore, it is importa-
plicates to validate the result for this gene. | e is either unavailable | | | alue (defa | ault 35), in I | e threshold cycle is either not determined or greater th
both samples meaning that its expression was undetec
s and un-interpretable. | | | **Fig.S4:** Identification of novel MRTF-A target genes by PCR array. Mouse fibrosis PCR array was performed as described under *Methods* with RNA prepared from MRTF-A deficient renal tubular epithelial cells treated with high glucose (Group 1) or wild type RTEs treated with high glucose (control group). **Fig.S5:** Validation of MRTF-A target genes *in vivo* and *in vitro*. (**A**) Wild type (WT) or MRTF-A deficient (KO) mice were induced to develop diabetic nephropathy by high-fat diet (HFD). Expression of *Col1a3*, *Acta2*, and *Timp1* in the kidneys was examined by qPCR. N=5 mice for each group. (**B**) Wild type (WT) or MRTF-A deficient (KO) mice were induced to develop diabetic nephropathy by STZ injection. Expression of *Col1a3*, *Acta2*, and *Timp1* in the kidneys was examined by qPCR. N=5 mice for each group. (**C**) NRK-52E cells were transfected with indicated siRNAs followed by treatment with glucose. Expression of *Col1a3*, *Acta2*, and *Timp1* in the kidneys was examined by qPCR. **Fig.S6:** Direct binding of MRTF-A to new target genes *in vivo* and *in vitro*. (**A**) Wild type (WT) or MRTF-A deficient (KO) mice were induced to develop diabetic nephropathy by high-fat diet (HFD). ChIP assays were performed using kidney lysates with anti-MRTF-A. SBE, Smad-binding element; SRE, serum response element/CArG box. N=3 mice for each group. (**B**) Wild type (WT) or MRTF-A deficient (KO) mice were induced to develop diabetic nephropathy by STZ injection. ChIP assays were performed using kidney lysates with anti-MRTF-A. N=3 mice for each group. (**C**) NRK-52E cells were treated with glucose or mannitol for 24 hours. ChIP assays were performed using kidney lysates with anti-MRTF-A. **Fig.S7:** (**A, B**) NRK-52E cells were treated with glucose of indicated concentrations for 24 hours. Expression of MRTF-A was measured by qPCR (A) and Western (B). (**C**) A MRTF-A promoter-luciferase fusion construct was transfected into NRK-52E cells followed by treatment with glucose or mannitol. **Fig.S8:** (**A**) NRK-52E cells were treated with glucose (35mM) in the presence or absence of 17β-estradiol (10^{-7} - 10^{-9} M) for 24 hours. Expression of MRTF-A was measured by qPCR. (**B**) NRK-52E cells were treated with glucose (35mM) in the presence or absence of 17β-estradiol (10^{-7} - 10^{-9} M) for 24 hours. ChIP assays were performed with anti-MRTF-A. **Fig.S9:** (**A-D**) WT or KO mice were induced to develop diabetic nephropathy by HFD. ChIP assays were performed using kidney lysates with anti-H3K9 (A), anti-H3K18 (B), anti-H3K27 (C), and anti-H3K4Me3 (D). N=3 mice for each group **Fig.S10:** (A-C) WT or KO mice were induced to develop diabetic nephropathy by STZ injection. ChIP assays were performed using kidney lysates with anti-H3K18 (A), anti-H3K27 (B), and anti-H3K4Me3 (C). N=3 mice for each group **Fig.S11:** (**A-C**) WT or KO mice were induced to develop diabetic nephropathy by HFD. ChIP assays were performed using kidney lysates with anti-H3K18 (A), anti-H3K27 (B), and anti-H3K4Me3 (C). N=3 mice for each group **Fig.S12:** (**A-C**) WT or KO mice were induced to develop diabetic nephropathy by STZ injection. ChIP assays were performed using kidney lysates with anti-H3K18 (A), anti-H3K27 (B), and anti-H3K4Me3 (C). N=3 mice for each group **Fig.S13:** (**A**) Primary renal tubular epithelial cells were isolated from WT or KO mice and treated with glucose. ChIP assays were performed with anti-p300. (**B**) Collagen promoter luciferase constructs were transfected into NRK-52E cells with indicated expression constructs. (**C**) NRK-52E was transfected with p300 siRNA or scrambled siRNA. p300 expression was measured by qPCR and Western. (**D**) Collagen promoter luciferase constructs were transfected into NRK-52E cells with indicated expression constructs and siRNAs. **Fig.S14:** (**A**) Primary renal tubular epithelial cells were isolated from WT or KO mice and treated with glucose. ChIP assays were performed with anti-p300. (**B**) NRK-52E was transfected with WDR5 siRNA or scrambled siRNA. WDR5 expression was measured by qPCR and Western. **Fig.S15:** (**A**) Primary renal tubular epithelial cells were isolated from WT or KO mice and treated with glucose or mannitol. Re-ChIP assays were performed with indicated antibodies. (**B**) NRK-52E cells were treated with glucose (35mM) in the presence or absence of 17β -estradiol (10^{-7} M) for 24 hours. Re-ChIP assays were performed with indicated antibodies. Table I: ChIP Real-time qPCR primers | Gene name | Primer sequences | | | |-----------------|---|--|--| | Mouse Col1a1 | Forward: 5'- ATTTGAAGTCCCAGAAAG -3' | | | | | Reverse: 5'- AGAAACTCCCGTCTGCTC -3' | | | | Mouse Col1a2 | Forward: 5'-CTTCGTGCATGACTTCAGCTTT-3' | | | | | Reverse: 5'-CGTCCTTTAGCATGGCAAGAC-3' | | | | Mouse Col1a3 #1 | Forward: 5'- GACTCTGGCAAAACTCAAAGTATCA-3' | | | | | Reverse: 5'- TAGGAATGTGCTTTGTGATAGCCT -3' | | | | Mouse Col1a3 #2 | Forward: 5'- AGACCTTCATTCCCAGCTACTTG-3' | | | | | Reverse: 5'- CTCTCTACCACTGACCTGCATCTC -3' | | | | Mouse Acta2 | Forward: 5'-AGCAGAACAGAGGAATGCAGTGGA AGA GAC-3' | | | | | Reverse: 5'-CCTCCCACTCGCCTC CCA AACAAGGAGC-3' | | | | Mouse Timp1 #1 | Forward: 5'- AGGACTGTGCATGACGTGGAG-3' | | | | | Reverse: 5'- ACAGTGGAGAATAAATGTCCATGC -3' | | | | Mouse Timp1 #2 | Forward: 5'- TGTGGTCAAGCAAAGCATCTG-3' | | | | | Reverse: 5'- TGGGTTTGTAGCTCAATTGTGC -3' | | | | Rat Col1a1 | Forward: 5'- ATCCTTCTGATTTGAGGTC -3' | | | | | Reverse: 5'- AGGTGAAACTCCCGTCTG -3' | | | | Rat Col1a2 | Forward: 5'-GACATGCTCAAGTGCTGAGTCAC-3' | | | | | Reverse: 5'-AGATTGCACAATGTGACGTCG-3' | | | | Rat Col3a1 | Forward: 5'- ATCCTTCTGATTTGAGGTC -3' | | | | | Reverse: 5'- AGGTGAAACTCCCGTCTG -3' | | | | Rat Timp1 | Forward: 5'-CTCTGCCACCCTCACCA-3' | | | | | Reverse: 5'-GGACTGGATGGGCCTCGT-3' | | | | Rat Acta2 | Forward: 5'- CATGCACGTGGACTGTACCT -3' | | | | | Reverse: 5'- AAAGATGCTTGGGTCACCTG -3' | | | | Rat Gapdh | Forward: 5'- ATCACTGCCACCCAGAAGACTGTGGA -3' | | | | | Reverse: 5'-C TCATACCAGGAAATGAGCTTGACAAA -3' | | |