SUPPLEMENTARY APPENDIX

Supplementary Figure 1: Serum 25(OH)Vitamin D Level Over Time Across Randomized Groups By Strata of Baseline 25(OH)Vitamin D Level 1A) Total Study Population 1B) Baseline Serum 25(OH)Vitamin D16-30 ng/ml and 1C) Baseline Serum 25(OH)Vitamin $D \leq 15 \mathrm{ng} / \mathrm{ml}$.

1A Full Study Population

1B Subgroup with Baseline Serum 25(OH)Vitamin D 16-30 ng/ml

1C 1B Subgroup with Baseline Serum 25(OH)Vitamin D $\leq 15 \mathrm{ng} / \mathrm{ml}$

Supplementary Table 1: Change in Epoetin Dose in Subjects Who Achieved Vs. Did not Achieve 25(OH)Vitamin D $\geq 30 \mathrm{ng} / \mathrm{ml}$ at 3 or 6 months

We analyzed the EPO dose across strata defined by achieving Vs. not achieving serum $25(\mathrm{OH}) \mathrm{D} \geq 30 \mathrm{ng} / \mathrm{ml} 1$) at 3 months and 2) at 3 or 6 months. 107 subjects had serum $25(\mathrm{OH}) \mathrm{D} \geq 30 \mathrm{ng} / \mathrm{ml}$ at 3 months and 117 , at 3 or 6 months and these were compared with the patients who did not at the respective timepoint.

Change in EPO Dose in Subjects Who Achieve Vs. Don't Achieve 25Vit D $\leq 30 \mathrm{ng} / \mathrm{ml}$ at 3 months

Paramet er	Achieved VitD $\geq 30 \mathrm{ng} / \mathrm{ml}$ at 3 months					Did Not Achieve Vit $\mathbf{D} \geq \mathbf{3 0} \mathbf{n g} / \mathrm{ml}$ at $\mathbf{3}$ months					
	Baseline Value	Month 3 Value	Month 6 Value	Model Slope * (95\% CI)	Withi n Grou p pvalue \ddagger	Baseline Value	Month 3 Value	Month 6 Value	Model Slope* (95\%Cl)	Withi n Grou p pvalue \ddagger	Btwn Group p value ${ }^{\text {§ }}$
Epoetin Dose units/we ek	$\begin{gathered} 6000 \\ (3100,1200 \\ 0) \end{gathered}$	$\begin{gathered} 6100 \\ (3000,1000 \\ 0) \end{gathered}$	$\begin{gathered} 8000 \\ (3000,1500 \\ 0) \end{gathered}$	$\begin{gathered} 0.98^{\wedge} \\ (0.54, \\ 1.02) \end{gathered}$	0.26	$\begin{gathered} 5000 \\ (2000,1180 \\ 0) \end{gathered}$	$\begin{gathered} 6000 \\ (2000,115 \\ 00) \end{gathered}$	$\begin{gathered} 7000 \\ (2000,1300 \\ 0) \end{gathered}$	$\begin{gathered} 1.0 \wedge^{\wedge} \\ (0.96,1.05 \end{gathered}$	0.99	0.46

Change in EPO Dose in Subjects Who Achieve Vs. Don't Achieve Baseline 25Vit $\mathbf{D} \leq \mathbf{3 0} \mathrm{ng} / \mathrm{ml}$ at 3 or 6 months

Paramete r	Achieved VitD $\geq 30 \mathrm{ng} / \mathrm{ml}$ at $\mathbf{3}$ or $\mathbf{6}$ months					Did Not Achieve Vit D $\mathbf{3 0} \mathbf{n g} / \mathrm{ml}$ at 3 or 6 months					
	Baseline Value	Month 3 Value	Month 6 Value	Model Slope * (95\% CI)	Withi n Grou p pvalue \ddagger	Baseline Value	Month 3 Value	Month 6 Value	Model Slope* (95\%CI)	$\begin{gathered} \text { Withi } \\ \mathrm{n} \\ \text { Grou } \\ \mathrm{p} \text { p- } \\ \text { value } \end{gathered}$	Btwn Group p value ${ }^{\S}$
Epoetin Dose units/wee k	$\begin{gathered} 5800 \\ (3000,1160 \\ 0) \end{gathered}$	$\begin{gathered} 6000 \\ (2600,9800 \\) \end{gathered}$	$\begin{gathered} 7500 \\ (2800,1600 \\ 0) \end{gathered}$	$\begin{aligned} & 0.98^{\wedge} \\ & (0.94, \\ & 1.02) \end{aligned}$	0.46	$\begin{gathered} 5200 \\ (2200,1200 \\ 0) \end{gathered}$	$\begin{gathered} 6000 \\ (2000,115 \\ 50) \end{gathered}$	$\begin{gathered} 6000 \\ (2000,1200 \\ 0) \end{gathered}$	$\begin{gathered} 1.00^{\wedge} \\ (0.96,1.05 \end{gathered}$	0.98	0.46

[^0][^1]
Handling of Missing Epogen

Of 7629 patient-weeks of observation, 177 (2.3\%) were missing. The primary way we handled missing EPO weeks, per the methods, was to carry the last value forwardif the absence was <2 weeks, and if longer than 2 weeks, it was left as missing. By these rules, very few patients missed months of Epogen, as shown in the Table.

	BL	1	2	3	4	5	6
Placebo	139	138	136	135	134	131	130
Ergocalciferol	137	136	135	134	132	129	122

Of the 9 patients in the placebo arm who were missing EPO data in month 6, 4 of these were deaths and 5 were for 'other unspecified reasons'. Of the 15 missing EPO in month 6 in the Ergo arm, 4 were deaths, 1 was a transplant, and 1 was a transfer to a non-participating unit, 9 were for 'other reasons'. Overall this is a small amount of missing data.

We also conducted sensitivity analyses, handling EPO in 2 additional ways

1) For all missing epoetin values, regardless of the duration of missingness, carry the last value forward
2) Leave all missing epoetin values as missing

Results are no different when we handled EPO missing in these 3 ways, as shown below. We have added this discussion to the Supplementary Appendix.

Supplementary Table2: Results of Mixed Models using 3 different ways of handling Missing Epoetin

Version	Definition of Missing Epoetin	Ergocalciferol		Placebo		
		Model Slope $(95 \% ~ C I)$	Within Group p value	Model Slope $(95 \% ~ C I)$	Within Group p value	Betwe en Group p value
1 (Shown in the manuscript)	≤ 2 weeks absence last value carried forward; >2 weeks set to missing	0.99 $(0.95,1.03)$	0.68	$0.98 \wedge$ $(0.94,1.02)$	0.42	0.78
2	Last value carried Forward	0.98 $(0.94,1.03)$	0.45	0.98 $(0.94,1.03)$	0.44	1.00
3	Left as missing	0.99 $(0.95,1.03)$	0.58	0.99 $(0.95,1.03)$	0.74	0.87

Supplementary Table 3: Antihypertensive Medication Use Over the Course of the Study By Treatment Arm

	Baseline $(\mathrm{N}=276)$	Group A $(N=139,50.4 \%)$	Group B $\text { (} \mathrm{N}=137,49.6 \% \text {) }$	P
BP medications				
No	66 (24\%)	30 (22\%)	36 (26\%)	0.361
Yes	210 (76\%)	109 (78\%)	101 (74\%)	
Number of BP medications				
-0-	66 (24\%)	30 (22\%)	36 (26\%)	0.889
-1-	58 (21\%)	31 (22\%)	27 (20\%)	
-2-	56 (20\%)	30 (22\%)	26 (19\%)	
-3-	51 (18\%)	26 (19\%)	25 (18\%)	
> $=4$	45 (16\%)	22 (16\%)	23 (17\%)	
	$\begin{aligned} & \hline \text { Month } 1 \\ & (\mathrm{~N}=274) \end{aligned}$	Group A $(N=138,50.4 \%)$	Group B $\text { (} \mathrm{N}=136,49.6 \% \text {) }$	P
BP medications				
No	67 (25\%)	31 (22\%)	36 (27\%)	0.420
Yes	206 (75\%)	107 (78\%)	99 (73\%)	
Number of BP medications				
-0-	67 (25\%)	31 (22\%)	36 (27\%)	0.909
-1-	58 (21\%)	32 (23\%)	26 (19\%)	
-2-	56 (21\%)	28 (20\%)	28 (21\%)	
-3-	49 (18\%)	25 (18\%)	24 (18\%)	
> $=4$	43 (16\%)	22 (16\%)	21 (16\%)	
	$\begin{aligned} & \hline \text { Month 2 } \\ & (\mathrm{N}=271) \end{aligned}$	Group A $(\mathrm{N}=137,50.6 \%)$	Group B (N = 134, 49.4\%)	P
BP medications				
No	66 (24\%)	30 (22\%)	36 (27\%)	0.341
Yes	205 (76\%)	107 (78\%)	98 (73\%)	
Number of BP medications				
-0-	66 (24\%)	30 (22\%)	36 (27\%)	0.874
-1-	59 (22\%)	31 (23\%)	28 (21\%)	
-2-	57 (21\%)	30 (22\%)	27 (20\%)	
-3-	47 (17\%)	23 (17\%)	24 (18\%)	
>=4	42 (16\%)	23 (17\%)	19 (14\%)	
	Month 3 $(\mathrm{N}=269)$	Group A $(N=135,50.2 \%)$	Group B $\text { (} \mathrm{N}=134,49.8 \% \text {) }$	P

BP medications				
No	66 (25\%)	30 (22\%)	36 (27\%)	0.376
Yes	203 (75\%)	105 (78\%)	98 (73\%)	
Number of BP medications				
-0-	66 (25\%)	30 (22\%)	36 (27\%)	0.923
-1-	58 (22\%)	30 (22\%)	28 (21\%)	
-2-	58 (22\%)	31 (23\%)	27 (20\%)	
-3-	46 (17\%)	23 (17\%)	23 (17\%)	
$>=4$	41 (15\%)	21 (16\%)	20 (15\%)	
	Month 4 $(N=265)$	Group A $(N=133,50.2 \%)$	Group B $\text { (} \mathrm{N}=132,49.8 \% \text {) }$	P
BP medications				
No	63 (24\%)	28 (21\%)	35 (27\%)	0.265
Yes	200 (76\%)	105 (79\%)	95 (73\%)	
Number of BP medications				
-0-	63 (24\%)	28 (21\%)	35 (27\%)	0.812
-1-	57 (22\%)	31 (23\%)	26 (20\%)	
-2-	58 (22\%)	31 (23\%)	27 (21\%)	
-3-	45 (17\%)	22 (17\%)	23 (18\%)	
$>=4$	40 (15\%)	21 (16\%)	19 (15\%)	
	Month 5 ($\mathrm{N}=259$)	Group A $(N=132,51.0 \%)$	Group B $(\mathrm{N}=127,49.0 \%)$	P
BP medications				
No	60 (23\%)	26 (20\%)	34 (27\%)	0.177
Yes	199 (77\%)	106 (80\%)	93 (73\%)	
Number of BP medications				
-0-	60 (23\%)	26 (20\%)	34 (27\%)	0.408
-1-	55 (21\%)	30 (23\%)	25 (20\%)	
-2-	55 (21\%)	33 (25\%)	22 (17\%)	
-3-	48 (19\%)	22 (17\%)	26 (20\%)	
$>=4$	41 (16\%)	21 (16\%)	20 (16\%)	
	$\begin{aligned} & \hline \text { Month } 6 \\ & (N=255) \end{aligned}$	Group A $(N=131,51.4 \%)$	Group B $\text { (} \mathrm{N}=124,48.6 \% \text {) }$	P
BP medications				

No	$55(22 \%)$	$23(18 \%)$	$32(26 \%)$	0.109
Yes	$200(78 \%)$	$108(82 \%)$	$92(74 \%)$	
Number of BP medications				
$-0-$	$55(22 \%)$	$23(18 \%)$	$32(26 \%)$	0.356
$-1-$	$62(24 \%)$	$36(27 \%)$	$26(21 \%)$	
$-2-$	$50(20 \%)$	$29(22 \%)$	$21(17 \%)$	
$-3-$	$47(18 \%)$	$22(17 \%)$	$25(20 \%)$	
$>=4$	$41(16 \%)$	$21(16 \%)$	$20(16 \%)$	

[^0]: interpretation is the percent change per month. For example a β of 0.98 for log Epoetin is interpreted as a 2% decrease in epoetin dose per month

[^1]: Ergocalciferol vs. Placebo.

