Supplemental Material

Table of contents

Page 2. Supplemental Figure 1. Recruitment of the prospective cohort of incident symptomatic stone formers

Page 3. Supplemental Table 1. Baseline characteristics of incident symptomatic kidney stone formers in the prospective cohort compared with those in the previously published historical cohort used to develop the ROKS tool.

Page 4. Supplemental Table 2. Predicting symptomatic and radiographic recurrence over 5 years with the Recurrence of Kidney Stone (ROKS) 2014 score in the full cohort and the subset with or without a baseline asymptomatic kidney stone.

Page 5. Supplemental Table 3. Prediction of different manifestations of kidney stone recurrence over 5 years by 24 -hour urine chemistries (after adjustment for age, gender and urine creatinine) and by serum chemistries (after adjustment for age and gender).

Page 6. Supplemental Table 4. Comparison of 5-year recurrence rate between the Minnesota and Florida sites

Supplemental Figure 1. Prospective cohort of incident stone formers

Supplemental Table 1. Baseline characteristics of incident symptomatic kidney stone formers in the prospective cohort for this study compared to the historical cohort used to developed the ROKS model.
$\left.\begin{array}{llll} & \begin{array}{l}\text { Prospective Cohort } \\ (\mathbf{2 0 0 9 - 2 0 1 7)}\end{array} & \begin{array}{l}\text { ROKS Cohort } \\ \text { 1 } \\ \text { (1984-2017) }\end{array} & \\ \text { Baseline characteristics } & \text { N = 3364 }\end{array}\right)$

Supplemental Table 2. Predicting symptomatic and radiographic recurrence over 5 years with the Recurrence of Kidney Stone (ROKS) 2014 score 2 in the full cohort and the subset with or without a baseline asymptomatic kidney stone.

	Full cohort$\text { (} \mathrm{N}=175 \text {) }$			Baseline asymptomatic kidney stone$(N=94)$			No baseline asymptomatic kidney stone$(\mathrm{N}=81)$		
Recurrence manifestation	5-year Rate(\%)	OR* (p-value)	$\begin{aligned} & \text { C-Statistic } \\ & \text { (95\% CI) } \end{aligned}$	5-year Rate(\%)	OR* (p-value)	C-Statistic (95\% CI)	5-year Rate(\%)	OR* (p-value)	C-Statistic (95\% CI)
Symptomatic recurrence - Clinical care	19\%	$\begin{gathered} 1.4 \\ (0.067) \end{gathered}$	$\begin{gathered} 0.606 \\ (0.500,0.712) \end{gathered}$	24\%	$\begin{gathered} 1.2 \\ (0.62) \end{gathered}$	$\begin{gathered} 0.551 \\ (0.404,0.697) \end{gathered}$	14\%	$\begin{gathered} 1.5 \\ (0.40) \end{gathered}$	$\begin{gathered} 0.590 \\ (0.402,0.777) \end{gathered}$
Symptomatic recurrence - Self-reported	25\%	$\begin{gathered} 1.8 \\ (0.002) \end{gathered}$	$\begin{gathered} 0.656 \\ (0.562,0.749) \end{gathered}$	30\%	$\begin{gathered} 1.7 \\ (0.055) \end{gathered}$	$\begin{gathered} 0.625 \\ (0.500,0.751) \end{gathered}$	19\%	$\begin{gathered} 2.3 \\ (0.061) \end{gathered}$	$\begin{gathered} 0.651 \\ (0.491,0.810) \end{gathered}$
Any symptomatic recurrence	30\%	$\begin{gathered} 1.9 \\ (<0.001) \end{gathered}$	$\begin{gathered} 0.670 \\ (0.582,0.757) \end{gathered}$	38\%	$\begin{gathered} 1.9 \\ (0.027) \end{gathered}$	$\begin{gathered} 0.638 \\ (0.519,0.756) \end{gathered}$	21\%	$\begin{gathered} 1.9 \\ (0.12) \end{gathered}$	$\begin{gathered} 0.620 \\ (0.470,0.771) \end{gathered}$
New stone between CT imaging	35\%	$\begin{gathered} 1.4 \\ (0.038) \end{gathered}$	$\begin{gathered} 0.592 \\ (0.503,0.682) \end{gathered}$	45\%	$\begin{gathered} 1.2 \\ (0.46) \end{gathered}$	$\begin{gathered} 0.541 \\ (0.422,0.660) \end{gathered}$	23\%	$\begin{gathered} 0.8 \\ (0.50) \end{gathered}$	$\begin{gathered} 0.567 \\ (0.415,0.719) \end{gathered}$
Stone growth between CT imaging	24\%	$\begin{gathered} 2.1 \\ (<0.001) \end{gathered}$	$\begin{gathered} 0.692 \\ (0.611,0.773) \end{gathered}$						
Stone passage between CT imaging	27\%	$\begin{gathered} 2.8 \\ (<0.001) \end{gathered}$	$\begin{gathered} 0.777 \\ (0.707,847) \end{gathered}$						
Any radiographic recurrence on CT	59\%	$\begin{gathered} 3.4 \\ (<0.001) \end{gathered}$	$\begin{gathered} 0.770 \\ (0.700,0.840) \end{gathered}$						
Any symptomatic or radiographic recurrence	67\%	$\begin{gathered} 3.2 \\ (<0.001) \end{gathered}$	$\begin{gathered} 0.759 \\ (0.686,0.831) \end{gathered}$						

*OR per standard deviation of ROKS Score ${ }^{2}$

Supplemental Table 3. Prediction of different manifestations of kidney stone recurrence over 5 years by 24 -hour urine chemistries (after adjustment for age, gender and urine creatinine) and by serum chemistries (after adjustment for age and gender).

[^0]Supplemental Table 4. Comparison of 5-year recurrence rate between the Minnesota and Florida sites

	Minnesota	Florida	
Recurrence manifestation	$\mathbf{N}=\mathbf{1 4 8}$	$\mathbf{N = 2 7}$	p-value
Symptomatic - clinical care	18%	30%	0.15
Symptomatic - self-reported	22%	37%	0.10
Any symptomatic	27%	48%	0.028
Radiographic new stone	37%	26%	0.29
Radiographic stone growth	22%	33%	0.21
Radiographic stone passage	28%	26%	0.84
Any radiographic	60%	56%	0.70
Any symptomatic or radiographic	64%	82%	0.12

References

1. Vaughan, LE, Enders, FT, Lieske, JC, Pais, VM, Rivera, ME, Mehta, RA, Vrtiska, TJ, Rule, AD: Predictors of Symptomatic Kidney Stone Recurrence After the First and Subsequent Episodes. Mayo Clinic Proceedings, 94: 202-210, 2019. 2. Rule, AD, Lieske, JC, Li, X, Melton, LJ, 3rd, Krambeck, AE, Bergstralh, EJ: The ROKS nomogram for predicting a second symptomatic stone episode. J Am Soc Nephrol, 25: 2878-2886, 2014.
2. Werness, PG, Brown, CM, Smith, LH, Finlayson, B: Equil2: A Basic Computer Program for the Calculation of Urinary Saturation. The Journal of Urology, 134: 1242-1244, 1985.

[^0]: *Supersaturation (SS) delta Gibb's free energy (DG) was calculated using EQUIL2 ${ }^{3}$

