Supplementary Material

- 1. Definitions
- 2. Power calculation
- 3. Utilities

Supplementary Tables

Table S1: Adjusted transition probabilities used in the model

Table S2: Corresponding dosages and list prices for the medicines utilised in preparing the anaesthetic solutions and other auxiliary medicines required per treatment arm

Table S3: Medical equipment and consumables used for anaesthesia

Table S4: Break-down of anaesthesia staff and afferent costs involved in the two anaesthetic procedures

Table S5: Additional costs relating to new AVF creation, AVF revision, TDC insertion, and ongoing dialysis

Table S6: Parameters included in the probabilistic sensitivity analysis and their associated distributions

Table S7: Scenario sensitivity analysis

Figure S1: One-way sensitivity of RA vs LA incremental cost at 1-year to key analysis parameters

1. **Definitions** (Adapted from Sidawy et al^a)

Primary patency: The interval from the time of access placement until any intervention designed to maintain or re-establish patency or access thrombosis. Assessed by blinded Vascular Access Nurse Specialist as presence of thrill and/or bruit.

Assisted primary patency: The interval from the time of access placement until access thrombosis including intervening manipulations (surgical or endovascular) designed to maintain the functionality of a patent access. Assessed by blinded Vascular Access Nurse Specialist as presence of thrill and/or bruit.

Secondary patency: The interval from the time of access placement until access abandonment or thrombosis including intervening manipulations (surgical or endovascular) designed to re-establish functionality in thrombosed access. Assessed by blinded Vascular Access Nurse Specialist as presence of thrill and/or bruit.

Functional patency: The interval from time of access placement until able to sustain useful haemodialysis. As patients in this study were both pre- dialysis and established on haemodialysis, several methods were used for assessing functional patency:

- 1. Ultrasonographic: >6mm diameter, <6mm from skin surface, flow rate >600ml/min^b
- 2. Clinical: either
 - **a.** *Established haemodialysis patient:* able to sustain haemodialysis flows >200ml/min via two-needle for 6 consecutive dialysis sessions
 - b. *Pre-dialysis:* assessed by experienced dialysis nurses as being able to sustain above

All patients had functional patency assessed by both clinical and ultrasonographic means. There was 100% concordance between the two measures in the study.

Immediate patency: At time of discharge from hospital. Assessed by blinded Vascular Access Nurse Specialist as presence of thrill and/or bruit.

³ Sidawy AN, Gray R, Besarab A et al. Recommended standards for reports dealing with arteriovenous haemodialysis access. *J Vasc Surg* 2002; **35(3)**: 603-610

^b Vascular Access Working Group. Clinical practice guidelines for vascular access. *AJKD* 2006; **48 Suppl 1:** S176-247.

2. Power calculation

A priori power calculation determined that a total of 126 patients (63 in each arm) would be required to detect an improvement in primary patency at 3 months from 65% to 85% in patients having AVF creation under BPB with 80% power and significance 0.05, allowing for 10% loss to follow-up or mortality. The 65% primary patency rate at 3 months is representative of maturation rates for AVF described elsewhere in the literature^c. We anticipated that an increase in primary patency at 3 months from 65 to 85% was a conservative estimate given local observational data had previously demonstrated AVF patency of 93% in patients having BPB compared to 52% in those having AVF creation under LA^d.

^c Dember LM, Beck GJ, Allon M *et al.* Effect of clopidogrel on early failure of arteriovenous fistulas for haemodialysis: a randomised controlled trial. *JAMA* 2008; **299**: 2164–71.

^d Zaliunate R, Kearns R, Clancy M, Macfarlane AJ. Does regional compared to local anaesthesia influence outcome after arteriovenous fistula creation? Presented at the European Society of Regional Anaesthesia, Dresden, Germany. 7-10th September 2011 Available online at: http://download.lww.com/wolterskluwer_vitalstream_com/PermaLink/AAP/A/AAP_36_7_2011_09_06_DAVIS_200526_SDC1.pdf. [Accessed 13th November 2013]

3. Utilities

The association between alternative forms of vascular access and health-related quality of life in patients with ESRD has been previously investigated in at least two studies^{e f}. The same methodology described in Shechter et al. (2017)^g was applied to derive baseline health utility scores assigned to alternative HD access modalities, utilising published data from survey instruments and a conversion model to map between instruments. The baseline utility score for patients dialysing via TDC was derived from HUI-3 scores collected from 205 patients with advanced chronic kidney disease all assumed to be dialysing via a TDC. Another study demonstrated quality of life benefit (in SF-12 scores) for patients undergoing HD using an AVF instead of a TDC. To derive a baseline utility score for the 'dialysing via AVF' state using common instruments, the SF-12 Mental Composite Score (MCS) and Physical Composite score (PCS) were converted to an HUI-3 score using a mapping algorithm between the two instruments. The average age (57·8 y) and gender distribution (54% male) of the trial cohort were used to perform the mapping and the following baseline utilities used in the model:

Health state	Baseline utility
HD via AVF	0.767
HD via TDC	0.677

Patients that are pre-dialysis are assumed to derive the same baseline utility as when dialysing via AVF regardless of the functional status of their AVF. No disutility was applied following infection episodes.

^e Wasse H, Kutner N, Zhang R, Huang Y. Association of initial hemodialysis vascular access with patient-reported health status and quality of life. *CJASN*. 2007; **2(4)**:708-14. Epub 05/18.

^f Gorodetskaya I, Zenios S, McCulloch CE, Bostrom A, Hsu C-Y, Bindman AB, et al. Health-related quality of life and estimates of utility in chronic kidney disease. *Kidney International*. 2005; **68(6)**:2801-8.

⁸ Shechter SM, Chandler T, Skandari MR, Zalunardo N. Cost-effectiveness Analysis of Vascular Access Referral Policies in CKD. *American Journal of Kidney Diseases*. 2017; **70(3)**:368-76.

Supplementary Tables

Table S1: Adjusted transition probabilities used in the model

Timeframe	Transition	ВРВ	LA
At 3 months	Success probability (functional AVF)	41·27%	28·57%
	Partial success (primary but non-functional AVF)	42.86%	33.33%
	Failure	15.87%	38·10%
	Death	0.00%	0.00%
Post-3 months	Functional AVF to failure	1.30%	5.90%
	Functional AVF to death	2.63%	3.85%
	Primary (non-functional) to functional patency	30.66%	47·72%
	Primary (non-functional) patency to failure	11.05%	3.28%
	Primary (non-functional) patency to death	1.25%	1.61%
	Surgical revisions*	5.60%	2·16%
	Radiological revision: angioplasty	2·16%	0.53%
	Radiological revision: stenting	1.07%	0.00%

^{*}Includes: superficialisation, collateral litigation, revision of anastomosis, DRiL, radiological declot, and proximalisation.

Table S2: Corresponding dosages and list prices for the medicines utilised in preparing the anaesthetic solutions and other auxiliary medicines required per treatment arm.

	Dosage (per patient)	Price (pack size)	Source
LA arm			
Anaesthetic solution of 0.5% L- bupivacaine + 1% lidocaine	14·7 mL	Calculation	Dosage from RCT
10mL 0.5% L-bupivacaine	1 x ampoule	£16·15 (10x ampoule)	BNF*
5mL 1% lidocaine	2 x ampoule	£2·59 (10x ampoule)	BNF
BPB arm			
Anaesthetic solution of 0.5% L- bupivacaine + 1.5% lidocaine with adrenaline 1 in 200,000	23.7 mL	Calculation	Dosage from RCT
10mL 0.5% L-bupivacaine (ampoule)	2 x ampoule	£16·15 (10x ampoule)	BNF
5mL 1% lidocaine (ampoule)**	2 x ampoule	£2·59 (10x ampoule)	BNF
5mL 2% lidocaine (ampoule)	2 x ampoule	£2·70 (10 x ampoule)	BNF
1mg adrenaline (ampoule)	1 x ampoule	£80·44 (10 x ampoule)	BNF
5mL 1% lidocaine to numb skin prior to BPB	1 x ampoule	£2·59 (10 x ampoule)	BNF
5 mL 1mg/mL midazolam	1 x ampoule	£6·00 (10 x ampoule)	BNF

^{*}List prices were taken from the BNF)^h, with preference given to generic or less costly formulations.**Where anaesthetic supplementation was required in either arm, it was assumed the patient incurs an additional cost relating to the medicines utilised in the local anaesthetic solution.

^h British National Formulary 2018. Available online at https://bnf.nice.org.uk. Accessed 02/09/18

Table S3: Medical equipment and consumables used for anaesthesia

	Units required	Price (pack size)	Source
LA arm			
20mL syringe	1	£12.00 (120 units)	National Procurement
23G needle	2	£2·49 (100 units)	Market price
ВРВ			
20mL syringe	2	£12.00 (120 units)	National Procurement
5mL syringe for midazolam	1	£4·99 (100 units)	Market price
2mL syringe for skin infiltration	1	£2·79 (100 units)	Market price
1mL insulin syringe to add adrenaline	1	£8·99 (120 units)	Market price
21G Braun stimuplex A block needle	1	£5·40 (1 unit)	Expert opinion
25G needle	1	£2·69 (100 units)	Market price
18G drawing up needle	1	£2·49 (100 units)	Market price
20G venflon	1	£1.29 (1 unit)	Market price
Dressing for venflon	1	£30·99 (50 units)	Market price
Chlorhexidine spray	One application*	£6·57 (1 unit)	Market price
Sterile surgical gloves	1	£48·11 (40 units)	Market price
Sling	1	£2.15 (5 units)	Market price
Tegaderm probe cover	1	£0·22 (1 unit)	Expert opinion
Eden Ultrasound Gel	1	£2·48 (1 unit)	Expert opinion
Ultrasound machine**	1	£25,000 (1 unit)	Expert opinion

^{*}Assuming 50 applications per recipient.

 $^{\rm i} EAC = \frac{{\it Asset Price * Discount Rate}}{{\it 1-(1+Discount Rate)^{-number of periods}}}$

^{**}Initial capital outlay was converted into an equivalent annual cost (EAC) using the formulaⁱ and assuming a discount rate of 3.5% and a five-year operating lifetime for the machine. The EAC was attributed on a per intervention basis using the mean number of surgeries performed in a day and the number of working days in a year.

Table S4: Break-down of anaesthesia staff and afferent costs involved in the two anaesthetic procedures

	Estimate (SD)	Source
Mean time required to		
perform anaesthesia		
LA arm	3·4 min (2·5)	RCT
BPB arm	17 min (5·7)	RCT
Staff responsible for		
administering anaesthesia		
LA arm	1 x consultant surgeon	Expert opinion
BPB arm	1 x consultant anaesthetist	Expert opinion
	1 x band 6 nurse	
Staff cost per working hour		
Consultant anaesthetist	£108·00	PSSRU ^j
Band 6 nurse	£45·00	PSSRU
Band 5 nurse	£37·00	PSSRU

_

^j Curtis LA, Burns A. Unit Costs of Health and Social Care 2018, University of Kent. Available online at: https://doi.org/10.22024/UniKent/01.02.70995 Accessed 19/05/2019

Table S5: Additional costs relating to new AVF creation, AVF revision, TDC insertion and on-going dialysis

Procedure	Cost	Source
New AVF creation	£2,095·00	NHS Reference Costs 2017/2018 ^k
		YQ42Z: Open Arteriovenous Fistula, Graft or
		Shunt Procedures; day cases
Surgical revision	£1,280·00	NHS Reference Costs 2017/2018
	·	YR48Z: Attention to arteriovenous fistula, graft
		or shunt; day cases
Radiological revision: angioplasty	£1,262·00	NHS Reference Costs 2017/2018
	·	AYR11: Percutaneous Transluminal Angioplasty
		of Single Blood Vessel; average of CC scores 0-
		9+; day cases
Radiological revision: stenting	£2,217·00	NHS Reference Costs 2017/2018
	·	YR12Z: Percutaneous Transluminal Angioplasty
		with Insertion of Stent Graft into Peripheral
		Blood Vessel; day cases
TDC insertion*	£741·00	NHS Reference Costs 2017/2018
		YR41A: Insertion of Tunnelled Central Venous
		Catheter; day cases
HD via AVF tariff**	£161·00	NHS Reference Costs 2017/2018
		LD02A: Hospital Haemodialysis or Filtration,
		with Access via Arteriovenous Fistula or Graft
HD via TDC tariff**	£151·00	NHS Reference Costs 2017/2018
		LD01A: Hospital Haemodialysis or Filtration,
		with Access via Haemodialysis Catheter
Sepsis treatment cost	£7,583·66	NHS Reference Costs 2017/2018
	,	WJ06: Sepsis With Multiple Interventions;
		weighted average

^{*}Patients required to start dialysis without a functional AVF will undertake a TDC insertion procedure. It is assumed this remains available for the patient to switch on and off TDC until the end of the time horizon.

_

^{**}A tariff per dialysis session was applied. Patients were assumed to dialyse for three sessions per week.

^k NHS Reference Costs 2017-18. Available online at https://improvement.nhs.uk/resources/reference-costs/. Accessed 02/09/18

Table S6: Parameters included in the probabilistic sensitivity analysis and their associated distributions

Parameter	Sample mean	low 95% CI	high 95% Cl	SD	SE	Alpha	Beta	Distribution
BPB administration time	17	15.59	18:41	5.7	0.72	560:3878116	0.030336134	Gamma
BPB pre-assessment time	15				1.5	100	0.15	Gamma
LA supplementation (LA arm, %)	14%	7%	21%	0.0182		52.68286383	316.097183	Beta
LA supplementation (BPB arm, %)	3%	2%	5%	0.0040		59.51212395	1815:119781	Beta
Consultant anaesthetist unit cost per working hour	£108·00			0 0040	£10.80	100	1.08	Gamma
Nurse (band 6) unit cost per working hour	£45.00				£4.20	100	0.45	Gamma
Nurse (band 5) unit cost per working hour	£37·00				£3·70	100	0.37	Gamma
New AVF cost	C2 005.00				6200-50	100	20.95	Gamma
New TDC insertion cost	£2,095·00				£209·50	100	7.44	Gamma
	£741·00				£74·10		7:41	
AVF surgical revision cost	£1,218·00				£121·80	100	12:18	Gamma
AVF radiological revision: angioplasty	£1,262·00				£126·20	100	12.62	Gamma
AVF radiological revision: stenting	£2,217·00				£221·70	100	22:17	Gamma
HD via AVF tariff	£161·00				£16·10	100	1:61	Gamma
HD via TDC tariff	£151·00				£15.10	100	1.51	Gamma
BPB arm: 3m success probability		21%	62%	0.0536		26.00751791		Beta
(functional AVF) BPB arm: 3m partial success	41·27% 42·86%	21%	64%	0·0526 0·0547		36·09751781 35·12190922	51·36954457 46·82921229	Beta
(primary but not functional AVF)	42 8070	40/	20/	0 0347		33 12130322		D.1.
BPB arm: post-3m functional AVF to failure	1:30%	1%	2%	0.0017		60.66502556	4610.013219	Beta
BPB arm: post-3m functional AVF to death	2.63%	1%	4%	0.0034		59.84512741	2213·205359	Beta
BPB arm: post-3m primary (non- functional) to functional patency	30.66%	15%	46%	0.0391		42.61630053	96·3625595	Beta
BPB arm: post-3m primary (non- functional) patency to failure	11.05%	6%	17%	0.0141		54.66962694	439·9313871	Beta
BPB arm: post-3m primary (non- functional) patency to death	1.25%	1%	2%	0.0016		60.69496882	4794·393517	Beta
LA arm: 3m success probability (functional AVF)	28·57%	14%	43%	0.0364		43.90238652	109.7559663	Beta
LA arm: 3m partial success (primary but not functional AVF)	33·33%	17%	50%	0.0425		40.97556075	81.95112151	Beta
LA arm: post-3m functional AVF to failure	5.90%	3%	9%	0.0075		57.83921846	923:0855287	Beta
LA arm: post-3m functional AVF to death	3.85%	2%	6%	0.0049		59.09698489	1475 • 878215	Beta
LA arm: post-3m primary (non- functional) to functional patency	47·72%	24%	72%	0.0609		32·13045074	35·19482229	Beta
LA arm: post-3m primary (non- functional) patency to failure	3.28%	2%	5%	0.0042		59•44667933	1752:355146	Beta
LA arm: post-3m primary (non- functional) patency to death	1.61%	1%	2%	0.0021		60-47182354	3688·125613	Beta
BPB arm: surgical revisions probability	5.60%	3%	8%	0.0071		58.02225518	978•348738	Beta
BPB arm: radiological revisions (angioplasty) probability	2.16%	1%	3%	0.0028		60.13398507	2720 • 186311	Beta
BPB arm: radiological revisions (stenting) probability	1.07%	1%	2%	0.0014		60.80592879	5624·112499	Beta
LA arm: surgical revisions probability	2.16%	1%	3%	0.0028		60.13398507	2720 • 186311	Beta
LA arm: radiological revisions (angioplasty) probability	0.53%	0%	1%	0.0007		61.13640228	11432·28985	Beta
HD via AVF utility	0.767121			0.0767		23·2879	7:069631602	Beta

HD via TDC utility	0.676824	0.0677		32:3176	15·43129779	Beta
Sepsis incidence on AVF (per	0.2		0.02	100	0.002	Gamma
1,000 dialysis days)	0.2					
Sepsis incidence on TDC (per	1.4		0.14	100	0.014	Gamma
1,000 dialysis days)			0 2 .		0 01.	
Weighted average sepsis cost	£7,583·66		£758·37	100	75.83659252	Gamma

Table S7: Scenario sensitivity analysis

Scenario	ICER (£/QALY)
Baseline	£12,898·87
Excluding ongoing haemodialysis costs	Dominating
% starting cohort pre-dialysis: 0%	£11,114·15
% starting cohort pre-dialysis: 100%	£15,259·33
Time horizon: 4 years	£10,193·59
Time horizon: 3 years	£4,399·35
Time horizon: 2 years	Dominating
Time horizon: 1 year	Dominating
Discount rate: 0%	£13,425·35
Discount rate : 5%	£12,667·69
Cohort starting age: 50	£12,759·65
Cohort starting age: 70	£13,019·88
Gender distribution: 100% female	£12,862·49
Gender distribution: 100% male	£12,920·34

Figure S1: One-way sensitivity of RA vs LA incremental cost at 1-year to key analysis parameters