1	Crumbs2 is an essential slit diaphragm protein of the
2	renal filtration barrier.
3	
4	Annika Möller-Kerutt ¹ , Juan E. Rodriguez-Gatica ² , Karin Wacker ¹ , Rohan Bhatia ² , Jan-Peter
5	Siebrasse ² , Nanda Boon ³ , Veerle Van Marck ⁵ , Peter Boor ⁶ , Ulrich Kubitscheck ² ,
6	Jan Wijnholds ^{3,4} , Hermann Pavenstädt ¹ and Thomas Weide ^{1*}
7	
8	¹) University Hospital of Muenster (UKM), Internal Medicine D (MedD), Albert-Schweitzer-
9	Campus 1 Building A14, 48149 Muenster, Germany
10	²) Institute of Physical and Theoretical Chemistry; Biophysical Chemistry, Rheinische Friedrich-
11	Wilhelms-University of Bonn, Wegeler Str. 12, 53115 Bonn, Germany
12	³) Department of Ophthalmology, Leiden University Medical Center (LUMC), Albinusdreef 2,
13	2333 ZA Leiden, The Netherlands
14	⁴) Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences
15	(KNAW), 1105 BA Amsterdam, The Netherlands
16	⁵) Gerhard-Domagk Institute of Pathology, University Hospital of Muenster (UKM), Muenster,
17	Germany
18	⁶) Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany; Department of
19	Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany
20	

1 Supplemental material

- 2 The supplemental material data consist of three supplemental tables (ST1-3), seven suppl.
- 3 Figures (SF1-7) and four supplemental video files (SV1-4).

4 Supplemental material table of contents

- 5 This article contains the following supplemental material:
- 6

7 Suppl. Tables

- 8 Table ST1: Primers for genotyping and cloning.
- 9 Table ST2: Antibodies used in this study.
- **10 Table ST3:** Primer pairs for RT-PCR.
- **Table ST4:** Weight of observed wildtype (Cre-) and Crb2^{podKO} (Cre+) mice.
- **12** Table ST5: Evaluation of glomerular injury in Crb2^{flox/flox} (control) and Crb2^{podKO} (knockout) mice.
- **13** Table ST6: Evaluation of tubular injury in wildtype Crb2^{flox/flox} (Cre-) and Crb2^{podKO} (Cre+) mice.
- 14 Table ST7: Localization of CRB2 variants in cells lines.
- 15

16 Suppl. Figures

- 17 Figure S1: Improved spatial resolution by deconvolution.
- **18** Figure S2: Crb2 is highly expressed in mice glomeruli.
- **19** Figure S3: Non-Mendelian inheritance distribution of Six2-Cre-Crb2^{wt/flox} x Crb2^{flox/flox} breeding.
- 20 Figure S4: Analyses of one-week old Crb2^{podKO} and littermate controls.
- 21 Figure S5: Crb2 loss results in glomerular sclerosis, accompanied by disordered and effaced foot
- 22 processes (≥8-weeks-old-mice).
- 23 Figure S6: Doxycycline-dependent expression of GFP- or SNAP tagged CRB2.
- 24 Figure S7: RNAseq analyses of CRB2 S267A mutant.
- 25
- 26 Suppl. Videos
- 27 Video SV1: SV1_Nephrin_Podocin_3D_overview
- 28 Video SV2: SV1_Nephrin_Podocin_3D_zoom
- 29 Video SV1: SV3_Crb2_Nephrin _3D_overview
- 30 Video SV1: SV4_Crb2_Nephrin _3D_zoom
- 31

Supplemental Tables

Table ST1: Primers for cloning and genotyping.

Cloning			
Target	Species	Direction	Sequence (5'-3')
hCrb2_wt	human	forward	CACCGGGCGCCATGGCGCTGGCCAGGCCTGGGAC
hCrb2_wt	human	reverse	TTAATTAACTAGATGAGTCTCTCCTCCGGTGG
hCrb2_S267A	human	forward	GACGAGGACGAGTGTGCAGCCAGCCCTGCCAGCATGGGGGCCGA
hCrb2_S267A	human	reverse	TCGGCCCCATGCTGGCAGGGGCTGGCTGCACACTCGTCCTCGTC
hCrb2_N800K	human	forward	GGCGGCAGGCAGTCCTGGAAGCTCACTGCGGGCTGCGTCTCC
hCrb2_N800K	human	reverse	GGAGACGCAGCCCGCAGTGAGCTTCCAGGACTGCCTGCCGCC
hCrb2_C629S	human	forward	ACTCATTTCCGTTCTGACTGTGCC
hCrb2_C629S	human	reverse	GGCACAGTCAGAACGGAAATGAGT
hCrb2_R633W	human	forward	TGCGACTGTGCCTGGCCCCATAGAGG
hCrb2_R633W	human	reverse	CCTCTATGGGGCCAGGCACAGTCGCA
hCrb2_R1249Q	human	forward	ATCCTGGCAGCCCAAAAGCGCCG
hCrb2_R1249Q	human	reverse	CGGCGCTTTTGGGCTGCCAGGAT
hCrb2_R610W	human	forward	AGAGCAGTGCTGGCCTCTGCCTTGTG
hCrb2_R610W	human	reverse	CACAAGGCAGAGGCCAGCACTGCTCT
hCrb2_E792D	human	forward	AGCCAGCCCAGCGACCTCGGCGGC
hCrb2_E792D	human	reverse	GCCGCCGAGGTCGCTGGGCTGGCT
hCrb2_deltaintra	human	forward	CTGGCAGCCCGAAAGTGACGCCAGTCTGAGGGC
hCrb2_deltaintra	human	reverse	GCCCTCAGACTGGCGTCACTTTCGGGCTGCCAG
NPHS1	human	forward	TTATGTCTCGAGATGGCCCTGGGGACGAC
NPHS1	human	reverse	CTTGCTACCGGTAGCACCAGATGTCCCCTCAGCT
Genotyping			
Target	Species	Direction	Sequence (5'-3')
Crb2Fwd	mouse	forward	TGGAGATGGACAGTGTCCTC
Crb2Rev	mouse	reverse	GCTCTGGAAACAGTCTCCTTG
CreFwd	mouse	forward	GACCAGGTTCGTTCACTCA
CreRev	mouse	reverse	TAGCGCCGTAAATCAA

Table ST2: Antibodies used in this study.

Protein / Antigen	Species	Manufacturer	Clone, Cat.No	Application
α-Actinin-4	rabbit	Enzo	ALX-210-356	WB (1:1000)
β-Tubulin	mouse	Sigma	T4026	WB (1:1000)
BiP	rabbit	Cell Signaling	C50B12;	WB (1:1000)
		Technology	#3177	
Calnexin	mouse	BD Biosciences	Clone 37; 610523	WB (1:1000)
Crb2 (mouse)	rabbit	Jan Wijnholds Group		
		1) van de Pave	rt et al., 2004	WB (1:500),
		2) Boroviak et	al., 2011	IF (1:150)
CRB2 (human)	rabbit	Atlas Antibodies	HPA043674	IHC (1:300)
				WB (1:500)
GFP	mouse	TakaraBio Clontech	JL-8; 632381	WB (1:1000)
Nephrin	guinea pig	Progen	GP-N2	WB (1:500)
				IF (1:100)
Nephrin	mouse	Santa Cruz	sc-376522	WB (1:500)
Pals1/MPP5	rabbit	ProteinTech	17710-1-AP	WB (1:1000)
				IF (1:200)
Podocin	rabbit	Sigma	P0372	IF (1:200)

Protein	Species	Manufacturer	Clone, Cat.No	Application
Anti-rabbit IgG Alexa488	goat	Life technologies	A11034	IF (1:1000)
Anti-rabbit IgG Alexa594	goat	Life technologies	A11012	IF (1:500)
Anti-rabbit IgG Alexa647	goat	Life technologies	A21244	IF (1:500)
Anti-guinea pig IgG Alexa488	goat	Life technologies	A11073	IF (1:500)
Anti-guinea pig IgG Alexa594	goat	Life technologies	A11076	IF (1:500)
Anti-guinea pig IgG Alexa647	goat	Life technologies	A21450	IF (1:500)
HRP-conjugated secondary antibodies	rabbit mouse guinea pig	Dianova; Jackson Immuno Research	-	WB (1:3000)
SNAP-surface® AlexaFluor 488	-	NEB	S9129S	Live cell imaging (1:200, 30 min)
DAPI	-	Roche	-	1:5000

Refererences

van de Pavert S, Kantardzhieva A, Malysheva A, Meuleman J, Versteeg I, Levelt C, Klooster J, Geiger S, Seeliger M, Rashbass P, Le Bivic A, Wijnholds J (2004) Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J Cell Sci 117, 4169-4177

2) Boroviak T, Rashbass P. (2011) The apical polarity determinant Crumbs 2 is a novel regulator of ESC-derived neural

13 progenitors. Stem Cells 29:193-205.

Table ST3: Primer pairs for RT-PCR.

1
2

Target	Species	Direction	Sequence (5'-3')	
Gapdh	mouse	forward	CCTGGAGAAACCTGCCAAGTA	
Gapdh	mouse	reverse	AAGTCGCAGGAGACAACCTG	
Crb2	mouse	forward	TGTACCTGCCCTGCCAATTT	
Crb2	mouse	reverse	ATGTCAGGCCTGTGTATCCATC	
Crb3	mouse	forward	AACGGGGGCCTGTCTTCA	
Crb3	mouse	reverse	CCCGAAGTTTTCGCATGAGC	
Crb3A	mouse	forward	GCTCATGCGAAAACTTCGGG	
Crb3A	mouse	reverse	GGCAGCTTGAGGTTGGGG	
Crb3B	mouse	forward	TCCTCCTTATAGCAGTGGGACT	
Crb3B	mouse	reverse	CGTGGGAAAACTGCTCCTCA	
Nphs1	mouse	forward	TATCGCCAAGCCTTCACAGG	
Nphs1	mouse	reverse	AGCTCAAAGGGCAGAGAACC	
Nphs2	mouse	forward	CAGAGGAAGGCATCAAGCCC	
Nphs2	mouse	reverse	GGACCTTTGGCTCTTCCAGG	
Ccl2	mouse	forward	AGCTGTAGTTTTTGTCACCAAGC	
Ccl2	mouse	reverse	TGCTTGAGGTGGTTGTGGAA	
Havcr1 (Kim1)	mouse	forward	GCATCTCTAAGCGTGGTTGC	
Havcr1 (Kim1)	mouse	reverse	TGCAGCTGGAAGAACCAACA	
Lcn2	mouse	forward	ACGGACTACAACCAGTTCGC	
Lcn2	mouse	reverse	AATGCATTGGTCGGTGGGG	
Serpine1 (Pai1)	mouse	forward	CACAGGCACTGCAAAAGGTC	
Serpine1 (Pai1)	mouse	reverse	GGATTGTCTCTGTCGGGTTGT	
Tagln	mouse	forward	TTATGAAGAAAGCCCAGGAGCA	
Tagln	mouse	reverse	TTTGTGAGGCAGGCTAAGCA	
·				
Target	Species	Direction	Sequence (5'-3')	
GAPDH	human	forward	GGACTCATGACCACAGTCCA	
GAPDH	human	reverse	CCAGTAGAGGCAGGGATGATG	
B3GALT5	human	forward	CCCCGCGCACGTGAT	
B3GALT5	human	reverse	GCCAAGAGGAAATTTGTCTCAAAGA	
CANX	human	forward	GATGACTGGGATGAAGATGCCC	
CANX	human	reverse	CCTCAGGTTTCTCTGCGTCT	
CRB2	human	forward	TGTACCTGCCCTGCCAATTT	
CRB2	human	reverse	GCCACACACACAAAGCCATC	
HSPA5	human	forward	CTCAACATGGATCTGTTCCGGT	
HSPA5	human	reverse	ATTCGAGTCGAGCCACCAAC	
HYOU1	human	forward	CGGGGAGTAGGATTTGACCG	
HYOU1	human			

- **Table ST4:** Weight of observed wildtype (Cre-) and Crb2^{podKO} (Cre+) mice.
- 2 The table show the weight of male and female mice used for experiments in this study at different
- 3 time points. Differences of homozygote (HOM) wildtype (Cre-; Crb2^{flox/flox}) and mice lacking Crb2 in
- 4 podocytes (Cre+; *Crb2^{podKO}*) becomes significant after 8 weeks in male and female animals. Statistical

5 evaluation was done by an unpaired two-tailed t-test for comparison of two groups. (n.s.: not

- 6 significant; * p<0.05)
- 7

gender	age [weeks]	HOM Cre	weight [g]	number of	p-value	
		(- /+)		animals		
female	1	-	5.00 ± 0.18	N=4	0.9567 (n.s.)	
female	1	+	4.98 ± 0.25	N=4	0.9507 (11.5.)	
male	1	-	4.93 ± 0.23	N=4	0.7260 (n.c)	
male	1	+	4.82 ± 0.17	N=4	0.7369 (n.s)	
female	5	-	16.06 ± 0.51	N=10	0.0527 (n.s.)	
female	5	+	14.97 ± 0.26	N=13		
male	5	-	17.61 ± 0.79	N=6	0.0897 (n.s.)	
male	5	+	15.50 ± 0.80	N=7	0.0897 (11.5.)	
female	8	-	20.91 ± 0.78	N=5	0.0446 (*)	
female	8	+	17.78 ± 1.06	N=5	0.0446 (*)	
male	8	-	23.66 ± 0.71	N=7	0.0190 (*)	
male	8	+	19.97 ± 0.95	N=3	0.0189 (*)	

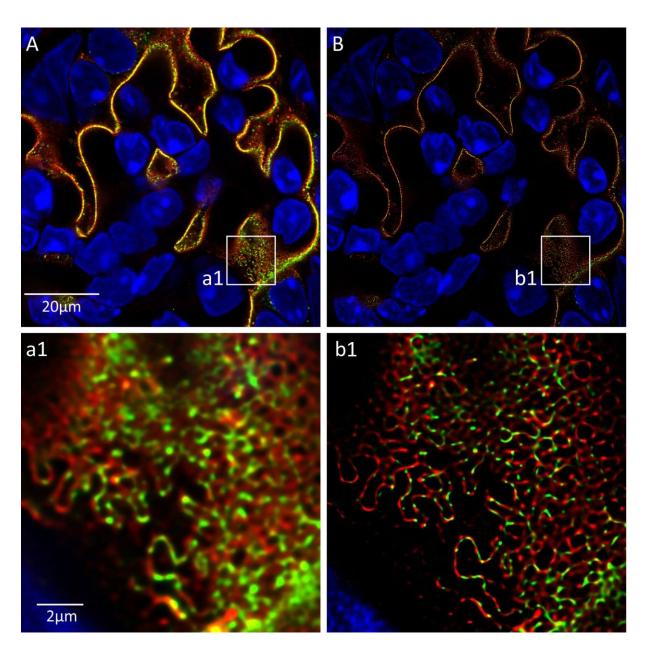
8

- **Table ST5:** *Evaluation of glomerular injury in Crb2*^{flox/flox} (control) *and Crb2*^{*podKO*} (knockout) *mice*.
- 2 To evaluate glomerular injury, the total amount of glomeruli without, or with segmental (<50%), or
- 3 global (>50% of the glomerular area) increase in matrix were counted and categorized as "normal",
- 4 "segmental glomerular sclerosis" or "global glomerular sclerosis", respectively. For that more than 70
- 5 glomeruli of wildtype control mice (Crb2^{flox/flox}) and knockout mice that lack Crb2 in podocytes
- 6 ($Crb2^{podKO}$) were used (Figure 2 I). This table gives the values as mean injury score, summarizing
- 7 segmental and global glomerular sclerois as injury versus normal glomeruli. Values are given in [%] and
- 8 statistical evaluation was done by an unpaired two-tailed t-test for comparison of two groups. (n.s.:
- 9 not significant; * p<0.05; ** p<0.01; *** p<0.001)
- 10

	mean glomerular injury [%]			
age	Crb2 ^{flox/flox} control	Crb2 ^{PodKO} knockout	p-value	
	(number)	(number)		
5 weeks	3.35 ± 0.89 (N=4)	26.20 ± 1.54 (N=4)	< 0.0001 (***)	
8 weeks	2.77 ± 0.66 (N=3)	61.37 ± 5.50 (N=3)	0.0004 (***)	

- **Table ST6:** Evaluation of tubular injury in wildtype Crb2^{flox/flox} (Cre-) and Crb2^{podKO} (Cre+) mice.
- 2 Histopathological analysis: Acute tubular injury was estimated in the corticomedullary areas by
- 3 determining the percentage of tubules with cast formation, dilatation, and degeneration (including
- 4 epithelial cell necrosis and loss of apical brush border). For each of these parameters, a five-point scale
- 5 according to *Marko et al* (JASN, 2016) was used: **0**: normal kidney; **1**: 1%–25%; **2**: 25%–50%; **3**: 50%–
- 6 75%; 4: 75%–100% tubular injury. The table gives the mean injury score for the different kind of tubular
 7 alterations (cast formation, dilatation of tubules and tubular degeneration). For each animal (N≥3) n≥
- 5 visual fields were evaluated. Statistical evaluation was done by an unpaired two-tailed t-test for
- 9 comparison of two groups. (n.s.: not significant; * p<0.05; ** p<0.01)
- 10

		mean inju		
age	type of tubular injury	ular Crb2 ^{flox/flox} control Crb2 ^{PodKO} knoc (number) (number)		p-value
5 weeks	cast	0.04 ± 0.04 (N=3)	0.07 ± 0.04 (N=4)	0.6623 (n.s.)
5 weeks	dilatation	0.16 ± 0.11 (N=3)	0.92 ± 0.22 (N=4)	0.0388 (*)
5 weeks degeneration 0.0		0.04 ± 0.04 (N=3)	0.46 ± 0.19 (N=4)	0.1046 (n.s.)
8 weeks	cast	0.03 ± 0.03 (N=4)	1.48 ± 0.44 (N=4)	0.0165 (*)
8 weeks	dilatation	0.28 ± 0.15 (N=4	2.27 ± 0.48 (N=4)	0.0076 (**)
8 weeks	degeneration	0.03 ± 0.03 (N=4)	2.42 ± 0.74 (N=4)	0.0180 (*)


- 1 **Table ST7:** Localization of CRB2 variants in cells lines.
- 2 The number of cells expressing CRB2-EGFP variants localized at the cell surface/plasma membrane or
- 3 intracellularly, at the ER (endoplasmic reticulum) was determined for immortalized podocyte (AB8) and
- 4 HEK293T cell lines. More than 200 cells per EGFP-CRB2 expressing variant were analyzed for stable
- 5 AB8 based cell lines.

CRB2	cell line	PM	ER	Disease-	remarks
variant		localization [%]	localization [%]	associated	
(mutant)					
WT	AB8	96.0	4.0	no	(wildtype)
S267A ¹⁾	AB8	2.3	97.7	no	mutant according to
					(Ramkumar et al., 2015)
R610W	AB8	94.0	6.0	no	evaluated as benigne
C629S	AB8	3.4	96.7	yes	Ebarasi et al., 20015
R633W	AB8	7.5	92.5	yes	Slavotinek et al., 2015
E792D	AB8	94.8	5.2	no	evaluated as benigne
N800K	AB8	14.0	86.0	yes	Slavotinek et al., 2015
R1249Q ²⁾	AB8	10.7	89.3	yes/unclear	Ebarasi et al., 2015/ uncertain significance (ClinVar)

¹⁾ mutant S267A inactivates putative conserved O-glycosylation for POGLUT by changing serin into alanine.

²⁾ Homozygous CRB2 R1249Q variants have been linked to SRNS-like phenotype, FSGS9 (Ebarasi et al., 2015) and was interpreted as "pathogenic". Two latter submissions observed no phenotype in homozygous humans and interpreted R1249Q homozygosity as "benign" (submission 2019, Dec, 31thby Invitae) or of "uncertain significance" (submission 2020, Jan, 6th by Reproductive Health Research and Development, BGI Genomics). Source: https://www.ncbi.nlm.nih.gov/clinvar/variation/180703

1 Supplemental Figures

Figure S1: *Improved spatial resolution by deconvolution.*

6 (A) A single image of a glomerulus stained against Nephrin (green), Podocin (red) and DAPI (blue). The
7 sample was imaged with a Leica SP8 using a 40x/1.1 water objective. Lateral size, 80.3. x 80.3 μm². (B)
8 Image after the deconvolution process (a1-b1) The magnifications demonstrate that an improved spatial
9 resolution was obtained by the deconvolution process allowing the visualization of details that
10 elucidated similar but slightly separated patterns of the Nephrin and Podocin signals. The same applied
11 to the Crb2/Nephrin stained samples.

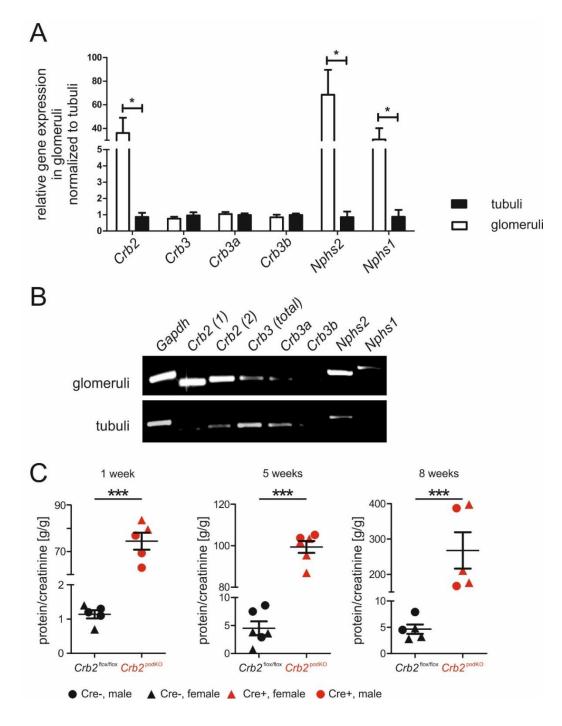


Figure S2: Crb2 is highly expressed in mice glomeruli.

(A) Relative gene expression (qRT-PCR analysis) of *Crb2* in comparison to isoforms *Crb3a and Crb3b* and
SD markers *Nphs1* (Nephrin) and *Nphs2* (Podocin) in murine glomeruli normalized to the tubular
fraction. (B) Representative corresponding agarose gel of used primers pairs in RT-PCR experiments. (C)
Quantification of proteinuria by determination of the protein creatinine ratio, indicating male circles)
and female (triangles) mice. (N=5, per group). Unpaired two-tailed t-Test: * p<0.05; ** p<0.01;

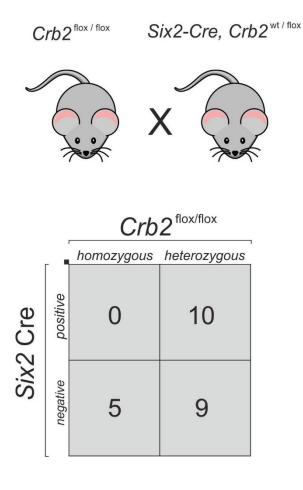
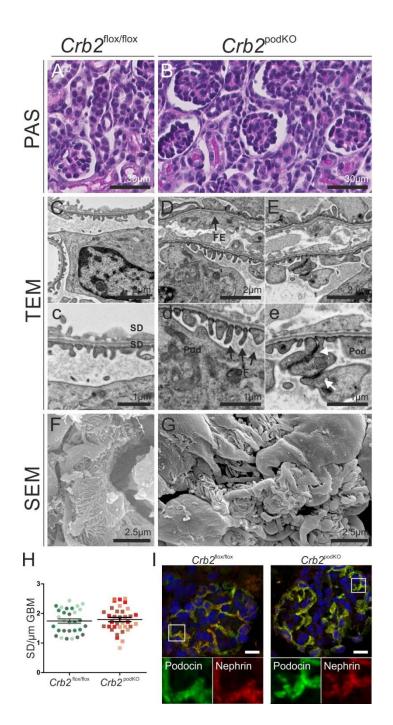



Figure S3: Non-Mendelian inheritance distribution of Six2-Cre-Crb2^{wt/flox} x Crb2^{flox/flox} breeding. Breeding
of heterozygous Six2-Cre positive, Crb2^{wt/flox} with Crb2^{flox/flox} should result in in the following Mendelian
ratios: 25% Crb2^{wt/flox}; 25% Crb2^{flox/flox} (both Six2 Cre-negative); 25% Six2-Cre; Crb2^{wt/flox}; 25% Six2-Cre;
Crb2^{flox/flox} (both Six2-Cre positive). F1 mice that totally lack Crb2 (homozygote Crb2^{flox/flox} Six2-Cre
positive; Crb2^{six2KO}) offspring are missing, suggesting Crb2^{six2KO} result in embryonic lethality.

Figure S4: Analyses of one-week old Crb2^{podKO} and littermate controls.

(A,B): PAS staining: Kidney tissue of one-week-old Crb2^{podKO} showed no obvious difference between Crb2^{flox/flox} and Crb2^{podKO} mice. (C-E): TEM analyses: Ultrastructural analyzes revealed some foot process effacement (FE, arrow) and processes of different sizes (D,d) in comparison to littermate control mice (C,c). In addition, podocytes of Crb2^{podKO} showed electron-dense regions between the cells (E, e; white arrows). (F,G) SEM analyses of the wildtype (F) and Crb2^{podKO} mice (G). Pod: podocyte cell body, FE: foot process effacement, DF: disordered foot process (H) Slit diaphragm (SD) number per µm GBM is not altered in 1-week old Crb2^{podKO} animals (N=3, >250 µm GBM). (I) Illustrative immunofluorescence analyses of SD-proteins Nephrin (red) and Podocin (green) in glomeruli from Crb2^{flox/flox} and Crb2^{podKO} show similar staining pattern at this age.

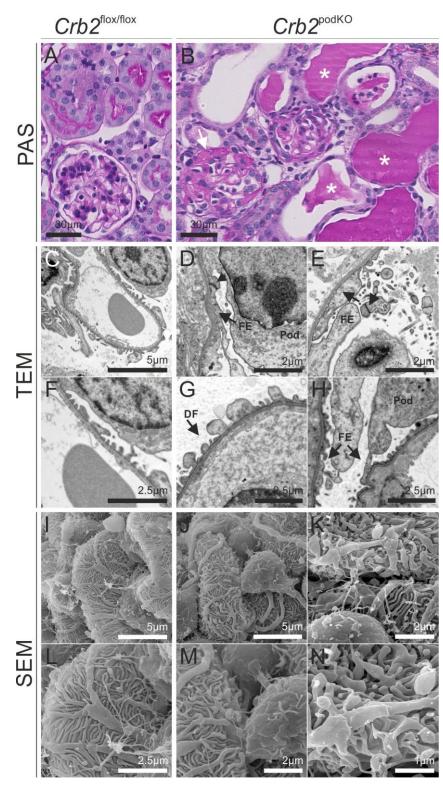
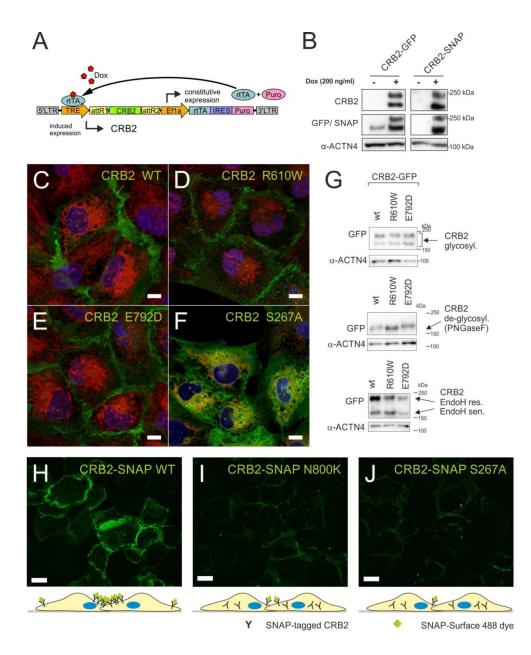



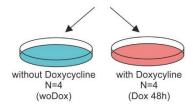
Figure S5: Crb2 loss results in glomerular sclerosis, accompanied by disordered and effaced foot
 processes (≥8-weeks-old mice).

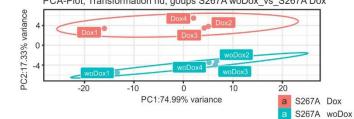
- 5 (A,B): PAS staining: The wildtype mice showed typical tubular and glomerular structures. Glomeruli of
- 6 Crb2^{podKO} showed segmental sclerosis (white arrow). Renal tubuli were dilated and contained protein
- 7 casts (white asterisks) (C-H): TEM analyses: Ultrastructural analyzes revealed increased foot process
- 8 effacement (FE arrow) and processes of different size (G,H) in comparison to littermate controls (C,F).
- 9 (I-N) SEM analyses: By contrast to the wildtype (I,L) podocytes foot processes of Crb2^{podKO} mice were
- 10 disordered, of variable size (J,K) and developed rounded ends (M,N).
- 11 Pod: podocyte cell body, FE: foot process effacement, DF: disordered foot process

1

3

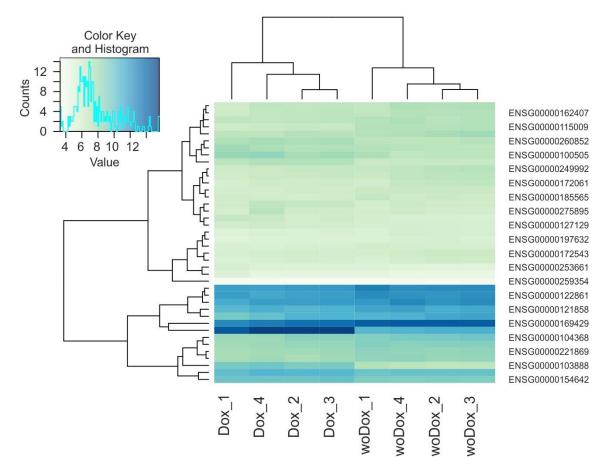
4 **Figure S6:** *Doxycycline-dependent expression of GFP- or SNAP tagged CRB2.*


5 (A) Scheme: The lentiviral pINDUCER21_Puro system was used to express various CRB2 wildtype as well 6 as CRB2 mutants and variants under the control of doxycycline (Dox). (B) Western blot: Stable AB8 7 podocyte cell lines express GFP- or SNAP tagged CRB2 only after administration of Dox (200ng/ml). 8 Expression was validated with antibodies against CRB2 or against the used GFP and SNAP tags, 9 respectively. AB8 cells have no endogenous CRB2 expression. (C-F) We added two non-pathogenic CRB2 10 variants (R610W and E792D) to our studies. CRB2 R610W and E792D variants showed a clear localization 11 in overlapping regions, similar as the used CRB2 wildtype (The CRB2 S267A mutant served was included 12 to show non-surface localization). (G) R610W and E792D showed same glycosylation pattern in 13 glycosylation analyses as the used CRB2 wildtype. (H-J) Surface labeling assays of SNAP-tagged Crb2 14 wildtype and N800K and S267A mutants in combination with the cell membrane impermeable SNAP-15 Surface® 488 dye. Only SNAP-tags on the surface of cells are able to bind the surface labeling dye. 16 Compared to the WT protein (H) N800K (I) and S267A (J) Using identical exposure times, Crb2 mutants 17 strongly showed a strongly reduced surface labelingin comparision to strongly positive CRB2 wildtype. 18 Scale bar= 10 µm.


- 19
- 20

A

AB8 podocytes + CRB2 S267A


PCA-Plot, Transformation rld, goups S267A woDox_vs_S267A Dox

В

top 40 sig genes with absIFC>1t transformation=rld S267A woDox_vs_S267ADox paired

1

2 Figure S7: RNAseq analysis of CRB2 S267A mutant.

(A) *left:* Setup of RNAseq analyses of AB8 podocyte cells expressing the GFP-tagged S267A Crb2 mutant
 (with Doxycycline, Dox) compared to non-induced control (woDox); *right* PCA–Plot transformation of
 the used samples of AB8 cells without (woDox) and with doxycycline induced (Dox) overexpression of
 Crb2-GFP S267A (N=4). (B) Heatmap of rlog-transformed values across samples of the top 40 significant
 regulated genes emphasizes the clear separation of four induced (Dox) and four non-induced (woDox)
 samples.

1 Supplemental Videos

2 Video SV1: SV1_Nephrin-Podocin_3D_overview_720_20_fps

3D stack of an expanded glomerulus stained against Nephrin (green), Podocin (red) and DAPI (blue).
Sample imaged with a Leica SP8. Size 80.3. x 80.3 x 16.9 μm³ (63 slices, 40x/1.1 NA water objective). The sample is shown after deconvolution with Huygens using the CLME algorithm, SNR: 40. The video highlights the Nephrin/Podocin structures first in a 3D rendering done with Imaris software and shows later the nuclei stained with DAPI to give a better representation of the spatial distribution.

8

9 Video SV2: SV1_Nephrin-Podocin_3D_zoom_720_20_fps

10 3D segmentation of a region of an expanded glomerulus showed in the supplementary video SV1,

11 visualizing that the intracellular adapter Podocin (red) localizes more closely to the nuclei (blue) than

12 the transmembrane protein Nephrin (green). Segmentation was performed in Imaris using the Surface

- 13 tool, independently on each channel, considering a bounding box of 23. x 19.6 x 10 μ m³
- 14

15 Video SV1: SV3_Crb2-Nephrin_3D_overview_720_20_fps

3D stack of an expanded glomerulus stained against Crb2 (green), Nephrin (red) and DAPI (blue). The
sample was imaged with a Leica SP8. Size 90.7. x 90.7 x 24.1 μm³ (105 slices, 40x/1.1 NA water objective).
The sample is shown after deconvolution with Huygens using the CLME algorithm, SNR: 40. The video
highlights the Crb2/Nephrin structures first in a 3D rendering done with Imaris and showing later the
nuclei stained with DAPI to give a better representation of the spatial distribution.

21

22 Video SV1: SV4_Crb2-Nephrin_3D_zoom_720_20_fps.

3D segmentation of a region of an expanded glomerulus showed in the supplementary video SV2,
revealing the presence of adjacent Crb2 (green) and Nephrin (red) clusters, in contrast to the
Nephrin/Podocin localization. Segmentation was performed in Imaris using the Surface tool,
independently on each channel, considering a bounding box of 23. x 19.6 x 10 µm³