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Supplementary Table 1. Glossary of technical terms. 

Term Description 

Ablation study Experiment with consecutively reduced input data. 

In more detail: A procedure where certain configurations of neural 

network architecture or training including modifications to data sets are 

changed to gain a better understanding of their importance and impact 

(mainly on overall performance). 

Border class ->Class comprising borders of structures. 

Example: The tubule’s border marked in 

red is assigned to the border class. 

In more detail: Artificial class representing 

the border of specific structures. In our 

application, we make use of a border 

class, that especially represents the 

tubular basement membrane, to separate 

tubular (as well as glomerular or arterial) instances from each other, 

allowing for instance-level analysis. 

Capacity Amount of ->parameters in a neural network. 

In more detail: A neural network consists of many trainable 

parameters. Its number represents the network’s capacity. It is also 

associated with its complexity, i.e. the degree of complexity of patterns 

the model is able to learn. Note that a neural network represents a 

mathematical function including input variables and parameters. Thus, 

the parameters are here defined in a mathematical way. 

Channel numbers Number of ->feature maps.  

Example: The channel number of the 

first, orange ->convolutional layer is 32. 

In more detail: In convolutional neural 

networks, input data is subsequently 

propagated through ->convolutional 

layers each producing multiple output 

->feature maps. Their number re-

presents the channel number of the layer. 

Class A group of structures. 

Example: All tubular structures belong to the “tubule”-class. 

Context-awareness Ability of a method to incorporate sufficient 

spatial neighborhood information for the 

assessment / prediction of a pixel.  

In more detail: The more spatial context 

is considered for pixel prediction, the 

more context-aware is a technique. In 

our case, our network provides sufficient 

spatial context even for pixel prediction 

at patch border. 

Convolutional layer Network layer performing convolutions to its input.  

Example: All green blocks represent such layers. 

In more detail: Such layers represent substantial 

components in CNNs. Convolutions are 

performed on input data resulting in multiple              

->feature maps. Convolutions are mainly specified based on the 

following ->parameters:  

32 

Pixel of interest 

Context/neighborhood 



->kernel size, ->stride and ->padding.  

As exemplary shown on the right, a 

convolution (with 3x3 kernel size) slides 

over the image and outputs a single 

value for each 3x3 region. 

Cross-entropy loss Information-theoretical measure of the dissimilarity between network 

output and ->ground truth. 

In more detail: A commonly used ->loss function when training 

segmentation or classification networks. The Cross-entropy loss (CE) 

is based on information theory and measures the difference between 

a target probability distribution (represented by ground truth 

annotations) and an estimated one (represented by model 

predictions). Its values range between 0 and 1. The smaller the loss, 

the higher the similarity. Thus, a perfect overlap results in a value of 

zero. 

Dice loss / Dice score The Dice score measures the similarity between network prediction 

and ->ground truth based on their spatial overlap. 

In more detail: The Dice score is a metric to quantify the similarity 

between two binary segmentations 𝑋 and 𝑌 as follows: 𝐷𝑆𝐶 =  
2 |𝑋∩𝑌|

|𝑋|+|𝑌|
. 

In other words, it roughly quantifies the amount of spatial overlap 

between both segmentations. For multi-label evaluation, binary 

representations of ground truth and prediction are compared for each 

class. Besides, the Dice loss is represented by the Dice score in the 

following way: 𝐷𝑆𝐶𝑙𝑜𝑠𝑠 = 1 − 𝐷𝑆𝐶, since neural networks require               

->loss functions instead of score functions.  

Ensembling ->Regularization technique to improve performance. 

In more detail: Instead of one single learning algorithm, multiple neural 

networks are differently trained, and thus form different predictors to 

reduce prediction variance. Final results are performed by merging the 

predictions of all networks. 

Epoch An epoch ends when all training samples have been fed through the 

network once. 

Feature An individual, measurable property, e.g. glomerular size is a feature of 

the glomerulus. 

Feature map Spatially arranged features that are generated by applying filters to the 

convolutional layer input, i.e. the input image or feature map outputs 

from the prior layer. 

Example: A convolutional filter has been applied to the left image 

resulting in a two-dimensional feature map highlighting its edges. 

  

Ground Truth Target data we expect the network to predict. We annotate and classify 

structures according to our renal ->class definitions in Supp. Table 2 

and consider these annotations and classifications to correspond to 

reality, thus representing the ground truth. 

Example: Ground truth image of the left image is shown right. 



  
Hyperparameter Special ->parameters to control e.g. the learning process or 

architecture of the deep learning model. They are determined by the 

experimentator before as well as dynamically during training. 

Examples are the amount of ->epochs or the ->kernel size. 

Image segmentation Decomposition of an image into structures of interest. 

Example: Segmentation of a tubule. 

 

Instance A single structure of a class. Example: All 

tubular instances are differently colored 

(Image from Supp. Fig. 5, third column). 

 

Instance normalization ->Regularization technique applied in neural networks.  

In more detail: In contrast to the widely used batch normalization, 

instance normalization normalizes each ->feature map independently 

providing zero mean and unit variance. 

Kernel size  Specifies the size of a convolutional filter that is slid over the image. 

Loss function A mathematical function measuring the dissimilarity between network 

prediction and ->ground truth. 

In more detail: To train a neural network, a (differentiable) 

mathematical loss function representing a metric to measure the 

dissimilarity between prediction and ground-truth is required. During 

training, the network is consecutively optimized (with respect to the 

loss function) to lower the loss and thus to improve the similarity 

between prediction and ground-truth. 

Negative slope ->Hyperparameter in the mathematical LeakyReLU function. 

In more detail: The LeakyReLU function is defined as follows: 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥,    𝑥 ≥ 0                                           
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 ∗ 𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Thus, the 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒-hyperparameter specifies the slope of the 

LeakyReLU function for negative inputs, i.e. 𝑥 < 0. Most commonly, 

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑠𝑙𝑜𝑝𝑒 = 0.01 is chosen by the experimentator. 

Padding An operation within convolutional layers to artificially enlarge the input 

data.  

In more detail: Specifies how much the input data is spatially padded 

around it. Padding an image with zeros exemplary means that zero 

values are added around it. Padding is used to counteract shrinkage 

of the input data caused by convolution. 

 



Example: 

         without padding                        with padding 
 

 

 

 

 

 

Parameter Components of a (deep learning) system that fully define and 

characterize the system.  

In more detail: During network training, its trainable parameters are 

optimized. After training, all network parameters (trainable and non-

trainable) are held constant, and the model is then used for prediction 

computation. 

Receptive field The prediction of a single output pixel only depends on a certain region 

of the input image. This region represents its receptive field. The size 

depends on the architecture of the network. 

Reduce-On-Plateau Technique to schedule the learning rate. 

In more detail: The learning rate represents an important                                

->hyperparameter in neural networks that controls the speed of 

learning. This learning rate scheduler reduces the learning rate by a 

specific factor each time when the validation error has not decreased 

for a certain number of epochs. 

Regularization Regularization techniques are employed to improve network’s 

generalization, i.e. reducing the error on test data. At the expense of 

increased training error, such techniques impose particularly designed 

constraints to the neural network preventing them to solely memorize 

the training data without having learned the underlying patterns. 

ReLU Stands for rectified linear unit and represents a mathematical function 

defined as follows: 𝑅𝑒𝐿𝑈(𝑥) =  {
𝑥,    𝑥 ≥ 0         
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

  

Robustness Describes the extent of input variability (e.g. in tissue morphology, 

staining, slide thickness, laboratory) an algorithm can cope with. 

Generally, it is measured by performance evaluation on those 

variabilities (usually held-out as in the current study). 

Stride An operation within convolutional layers to specify how many pixels 

the convolutional filter (or: ->kernel) is moved when slid over the 

image. 

Example: 

stride of “1” (shift of 1 pixel)             stride of “2” (shift of 2 pixels). 

 

 

 

 

 

Test-time augmentation ->Regularization technique to improve performance. 

In more detail: Regularization technique that forwards flipped versions 

of the input through the network and averages their respectively back-

flipped predictions to yield the final prediction. In contrast to                          

->ensembling, just a single network/predictor is used to perform 

multiple estimations. 

 

 



                 
 

                                
 

                                
 

                                
 

Transposed convolutions The conventional convolution provides a many-to-one relationship 

between input and output, since many input pixels are connected to a 

single value in the output. In 

contrast, transposed convolutions 

make use of a reversed pixel 

connectivity (in backward 

direction) providing a one-to-many 

relationship. Thus, it is designed 

for image ->upsampling. 

Upsampling Expansion or increase of the spatial resolution of an image. 

In more detail: Upsampling can be exemplarily performed by pixel 

interpolation meaning that new pixel values can be estimated between 

pixels by using their neighborhood, e.g. by averaging neighboring 

pixels values (ultimately yielding a denser image grid). The picture in  

->transposed convolutions exemplarily shows an upsampling of an 

artificial image. 
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Supplementary Table 2. Criteria for definition of classes. 

Class  Criteria 

Full glomerulus 
- annotation along Bowman’s capsule 

- if cross section showed urinary (or vascular) pole, glomerulus was 

encircled in round/oval shape 

Glomerular tuft 

- subclass of the full glomerulus class 

- annotation of glomerular tuft only (including podocytes)  

- for glomerular lesions: extracapillary proliferates (= crescents), 

parietal epithelial cells which migrated onto the tuft or tip lesions 

were not included 

Tubule 
- annotation along, but excluding, the basement membrane 

Artery - annotation of all arteries, including all arterial branches to arterioles 

- at least one visible vascular smooth muscle cell layer required  

Arterial lumen - subclass of the artery class 

- annotation of lumen only, excluding also the endothelium  

Vein  

- annotation of large “white” areas  

- only the lumen, i.e. the “white” area was annotated 

- for veins the definition of larger vessels next to arteries with a 

minimal diameter of 30µm  

- class includes non-tissue background and renal pelvis 

 

  



Supplementary Table 3. Quantitative information on ground truth data. 

Model / 

Species 

Number of 

annotated 

patches / WSI 

Train / val / test 

split of annotated 

patches  

Train / val / test 

split of partially 

annotated WSI 

Total number of instance annotations 

Σ full 

glom. 

glom. 

tuft 
tubule artery 

arterial 

lumen 
vein 

Healthy 

mouse 

820 / 41 600 / 60 / 160 30 / 3 / 8 835 804 18536 1107 1416 609 23307 

UUO 300 / 15 220 / 20 / 60 11 / 1 / 3 225 221 6795 301 314 177 8033 

IRI 300 / 15 220 / 20 / 60 11 / 1 / 3 242 242 7555 354 397 102 8892 

Adenine 300 / 15 220 / 20 / 60 11 / 1 / 3 257 256 5995 342 384 111 7345 

Alport 300 / 15 220 / 20 / 60 11 / 1 / 3 413 368 7137 361 383 83 8745 

NTN 300 / 15 220 / 20 / 60 11 / 1 / 3 247 237 5500 275 295 139 6693 

db/db 30 / 3 0 / 0 / 30 0 / 0 / 3 27 27 652 27 22 10 765 

Ext. UUO 30 / 3 0 / 0 / 30 0 / 0 / 3 46 43 879 42 27 8 1045 

Human 230 / 12 200 / 0 / 30 10 / 0 / 2 123 148 1958 125 145 40 2539 

Rat 80 / 8 50 / 0 / 30  5 / 0 / 3 56 59 1372 66 74 27 1654 

Pig 80 / 6 50 / 0 / 30 5 / 0 / 1 50 49 900 57 67 23 1146 

Marmoset 80 / 8 50 / 0 / 30 5 / 0 / 3 39 39 774 62 70 28 1012 

Black bear 80 / 8 50 / 0 / 30 5 / 0 / 3 51 51 1240 85 91 28 1546 

Σ 2930 / 164 2100 / 160 / 670 115 / 8 / 41 2611 2544 59293 3204 3685 1385 72722 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction, val = validation 

 

 

 

 

 

 

 

 



Supplementary Table 4. Architecture of our CNN. 

Network Architecture Output size 

Input image layer 640 x 640 x 3 

Conv2d(i: 3, o: 32, k: 3, s: 1, p: 1) + IN(o: 32) + LeakyReLU(sl: 0.01) 640 x 640 x 32 

Conv2d(i: 32, o: 32, k: 3, s: 1, p: 1) + IN(o: 32) + LeakyReLU(sl: 0.01) 640 x 640 x 32 

MaxPool2d(k: 2, s: 2, p: 0) 320 x 320 x 32 

Conv2d(i: 32, o: 64, k: 3, s: 1, p: 1) + IN(o: 64) + LeakyReLU(sl: 0.01) 320 x 320 x 64 

Conv2d(i: 64, o: 64, k: 3, s: 1, p: 1) + IN(o: 64) + LeakyReLU(sl: 0.01) 320 x 320 x 64 

MaxPool2d(k: 2, s: 2, p: 0) 160 x 160 x 64 

Conv2d(i: 64, o: 128, k: 3, s: 1, p: 1) + IN(o: 128) + LeakyReLU(sl: 0.01) 160 x 160 x 128 

Conv2d(i: 128, o: 128, k: 3, s: 1, p: 1) + IN(o: 128) + LeakyReLU(sl: 0.01) 160 x 160 x 128 

MaxPool2d(k: 2, s: 2, p: 0) 80 x 80 x 128 

Conv2d(i: 128, o: 256, k: 3, s: 1, p: 1) + IN(o: 256) + LeakyReLU(sl: 0.01) 80 x 80 x 256 

Conv2d(i: 256, o: 256, k: 3, s: 1, p: 1) + IN(o: 256) + LeakyReLU(sl: 0.01) 80 x 80 x 256 

MaxPool2d(k: 2, s: 2, p: 0) 40 x 40 x 256 

Conv2d(i: 256, o: 512, k: 3, s: 1, p: 1) + IN(o: 512) + LeakyReLU(sl: 0.01) 40 x 40 x 512 

Conv2d(i: 512, o: 512, k: 3, s: 1, p: 1) + IN(o: 512) + LeakyReLU(sl: 0.01) 40 x 40 x 512 

MaxPool2d(k: 2, s: 2, p: 0) 20 x 20 x 512 

Conv2d(i: 512, o: 1024, k: 3, s: 1, p: 1) + IN(o: 1024) + LeakyReLU(sl: 0.01) 20 x 20 x 1024 

Conv2d(i: 1024, o: 1024, k: 3, s: 1, p: 1) + IN(o: 1024) + LeakyReLU(sl: 0.01) 20 x 20 x 1024 

ConvTranspose2d(i: 1024, o: 1024, k: 2, s: 2) 40 x 40 x 1024 

Conv2d(i: 1536, o: 512, k: 3, s: 1, p: 0) + IN(o: 512) + LeakyReLU(sl: 0.01) 38 x 38 x 512 

Conv2d(i: 512, o: 512, k: 3, s: 1, p: 0) + IN(o: 512) + LeakyReLU(sl: 0.01) 36 x 36 x 512 

ConvTranspose2d(i: 512, o: 512, k: 2, s: 2) 72 x 72 x 512 

Conv2d(i: 768, o: 256, k: 3, s: 1, p: 0) + IN(o: 256) + LeakyReLU(sl: 0.01) 70 x 70 x 256 

Conv2d(i: 256, o: 256, k: 3, s: 1, p: 0) + IN(o: 256) + LeakyReLU(sl: 0.01) 68 x 68 x 256 

ConvTranspose2d(i: 256, o: 256, k: 2, s: 2) 136 x 136 x 256 

Conv2d(i: 384, o: 128, k: 3, s: 1, p: 0) + IN(o: 128) + LeakyReLU(sl: 0.01) 134 x 134 x 128 

Conv2d(i: 128, o: 128, k: 3, s: 1, p: 0) + IN(o: 128) + LeakyReLU(sl: 0.01) 132 x 132 x 128 

ConvTranspose2d(i: 128, o: 128, k: 2, s: 2) 264 x 264 x 128 

Conv2d(i: 192, o: 64, k: 3, s: 1, p: 0) + IN(o: 64) + LeakyReLU(sl: 0.01) 262 x 262 x 64 

Conv2d(i: 64, o: 64, k: 3, s: 1, p: 0) + IN(o: 64) + LeakyReLU(sl: 0.01) 260 x 260 x 64 

ConvTranspose2d(i: 64, o: 64, k: 2, s: 2) 520 x 520 x 64 

Conv2d(i: 96, o: 32, k: 3, s: 1, p: 0) + IN(o: 32) + LeakyReLU(sl: 0.01) 518 x 518 x 32 

Conv2d(i: 32, o: 32, k: 3, s: 1, p: 0) + IN(o: 32) + LeakyReLU(sl: 0.01) 516 x 516 x 32 

Conv2d(i: 32, o: 8, k: 1, s: 1, p: 0)  516 x 516 x 8 

Conv2d = two-dimensional convolutional layer, IN = instance normalization, i = #input layers, o = 

#output layers, k = kernel size, s = stride, p = padding, sl = negative slope 

  



Supplementary Table 5. Performance comparison of our model, its unmodified 

variant vanilla u-net, and state-of-the-art context-encoder. 

Shown are mean object-level dice scores for our model / the unmodified variant vanilla u-net / state-of-

the-art context-encoder. The highest Score is marked in bold. * p < 0.05 vs. vanilla u-net and ° p < 

0.05 vs. context-encoder. 

Mouse 

Model 

Segmentation performance of our model / vanilla u-net / context-encoder 

full glomerulus glomerular tuft tubule artery arterial lumen vein 

Healthy 96.5 / 95.6 / 96.2 93.8 / 93.8 / 93.5   93.3 / 92.9 / 93.0 88.1 / 87.4 / 87.8 80.3 / 80.0 / 80.6 94.3 / 88.9 / 92.0 

UUO 97.5 / 95.2 / 95.3 95.6 / 93.9 / 94.5 90.8 / 90.8 / 91.3 82.3 / 81.2 / 82.6 75.0 / 72.9 / 73.7 97.6 / 95.4 / 94.6 

IRI 96.0 / 97.7 / 95.7 95.4 / 94.7 / 94.4 90.2 / 89.1 / 89.9 79.1 / 74.7 / 74.2 73.5 / 62.3 / 61.7 97.7 / 86.7 / 87.0 

Adenine 98.8 / 94.1 / 98.5 97.2 / 94.1 / 97.1 93.0 / 92.0 / 92.8 87.9 / 83.3 / 83.2 80.9 / 72.7 / 76.9 93.6 / 87.6 / 96.7 

Alport 94.7 / 95.5 / 96.3 91.3 / 86.4 / 87.6 90.6 / 89.7 / 89.3 80.3 / 74.2 / 72.0 81.1 / 69.9 / 65.5 89.2 / 83.2 / 81.7 

NTN 95.5 / 91.5 / 96.3 94.8 / 93.9 / 93.9 93.2 / 92.5 / 92.9 86.8 / 82.7 / 83.9 78.2 / 73.9 / 79.1 92.8 / 91.8 / 95.4 

∅ 96.4* / 94.0 / 96.3 94.2* / 92.6 / 93.0 92.0* / 91.4 / 91.7 85.3*° / 82.8 / 82.9 79.1*° / 75.9 / 76.1 94.3* / 90.4 / 92.7 

IRI = ischemia reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction 

 



 
Supp. Fig. 1. Annotation procedure. 

A representative picture of a PAS stained mouse kidney section (A) and an overlay 

with manual annotations for six classes (A’). The annotation of the “glomerular tuft” 

(blue (B)) included the capillary tuft, the mesangium and podocytes. A “full glomerulus” 

(green (C)) was annotated along bowman’s capsule and included the tuft, bowman’s 



space and parietal epithelial cells. The glomerular tuft was always a subclass of the 

full glomerulus. A full glomerulus always had a round or oval shape, this determined 

the separation from the proximal tubule (arrow). Tubules (red (D) were annotated along 

(but excluding) the tubular basement membrane, tangentially cut tubules without 

cytoplasm were excluded. The “arterial lumen” (yellow (D)) was always a subclass of 

the “artery” class (magenta (F)). Veins, background and renal pelvis were big “white” 

areas without tissue (cyan (G)). From the first manual annotations, we predicted initial 

pre-annotations for 20 patches per WSI and loaded them into Qupath for manual 

corrections facilitating annotation effort (H). 

 

 

 

  



 
Supp. Fig. 2. Challenging morphology for manual and automated annotations. 

(A-A’’) show examples of glomeruli in PAS stained murine kidney sections. On a 

sectional plane close to the vascular or urinary pole it was difficult to discriminate 

between glomerular tuft and arterioles (arrow, A), or the glomerular tuft and parietal 

epithelial cells or tubular epithelial cells (arrows, A’,A’’). Sometimes the tubular 

basement membrane appeared discontinuous (arrows in B, B’). The distinction of 

medial layers of arteries was harder when vessels run side by side (arrow, C). (D-D’’) 

show medulla of murine kidneys with the network of capillaries and the tubular system, 

which in some cases was not easy to discriminate. 

 

 

  



 
Supp. Fig. 3. Segmentation of WSI of UUO, Alport and NTN kidneys. 

CNN generated segmentation predictions on a whole slide image (WSI) of an UUO 

(A), Alport (B) and NTN (C) mouse kidney. All six classes, were precisely segmented. 

NTN = nephrotoxic nephropathy, UUO = unilateral ureteral obstruction.  



 
Supp. Fig. 4. Quantitative segmentation performance in murine NTN and adenine 

kidneys. 

Representative PAS pictures and the corresponding segmentation prediction 

generated by our CNN for a murine NTN (A) and adenine kidney (B). Instance 

segmentation accuracy is shown by dice scores for each class in both models (A’-B’). 

Data are presented in Box plots with median, quartiles and whiskers. NTN = 

nephrotoxic nephropathy. 

 

 

  



 
Supp. Fig. 5. Automated segmentation in the medulla of murine kidney sections. 

Representative PAS pictures and corresponding overlays with segmentation 

predictions showing either the different classes or every single instances for the 

medulla of murine healthy (A-A’’), UUO (B-B’’), IRI (C-C’’), adenine (D-D’’), Alport (E-

E’’) and NTN (F-F’’) kidneys. 

IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 

ureteral obstruction.  



 
Supp. Fig. 6. Examples of missclassifications.  

PAS photographs and prediction overlays show an incorrect separation of a “full 

glomerulus” and the connected proximal “tubule” (arrow in A, A’), a glomerular tuft that 

was inaccurately segmented with projections into the crescent (arrow in B, B’) and an 

incompletely segmented tubule due to extensive necrosis (arrow in C,C’). Another 

example shows a strongly dilated tubule which is was incorrectly classified as full 

glomerulus and arterial lumen (arrowheads in D,D’) and missing segmentations of 

atrophic tubules (arrows in D,D’).  



 
 

Supp. Fig. 7. Relation between amount of training data and detection 

performance.  

The detection performance for all six classes in healthy (A), UUO (B), IRI (C), adenine 

(D), Alport (E) and NTN (F) was plotted against the amount of total data used for CNN 

training. 

IRI = ischemia-reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral 

ureteral obstruction. 
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Supp. Fig. 8. Comparison between our full CNN and its variants independently 

trained on single models. 

(A) Segmentation performance shown as instance dice scores for all six classes was 

compared on our healthy kidney test data between our full CNN trained on all training 

data (blue) and its variant that has been solely trained with data from healthy kidneys 

(yellow). (B) The same comparison is shown for the UUO, in which the network variant 

was exclusively trained with annotations from UUO kidneys. Analogously, analyses are 

performed for IRI (C), adenine (D), Alport (E) and NTN (F). 

Data are presented in Box plots with median, quartiles and whiskers. IRI = ischemia-

reperfusion injury, NTN = nephrotoxic nephropathy, UUO = unilateral ureteral 

obstruction. 

 

  



 
Supp. Fig. 9. Segmentation of non-trained and external murine kidney slides. 

Representative pictures show segmentation results for cortex (A-A’’) and medulla (B-

B’’) for kidneys from db/db mice fed with high fat western diet. Predictions (A’, B’) depict 

different classes, while A’’ and B’’ display segmentation on single instance level. The 

CNN also accurately segments cortex (C-C’’) and medulla (D-D’’) from PAS slides of 

an external UUO cohort. Predictions (C’, D’) depict different classes, while C’’ and D’’ 

display segmentation on single instance level. 

UUO = unilateral ureteral obstruction. 

 

 



 
Supp. Fig. 10. Automated segmentation of renal medulla in different species. 

Representative PAS pictures and the corresponding overlays for segmentation 

predictions showing either the different classes or every single instance for the medulla 

of rat (A-A’’), pig (B-B’’), black bear (C-C’’), marmoset (D-D’’) and human (E-F’’) 

kidneys. Segmentation is accurate on human nephrectomy (E-E’’) as well as on biopsy 

specimens (F-F’’). 



 

Supp. Fig. 11. Automated segmentation of human biopsies presenting with acute 

tubular damage. Representative PAS-pictures and the respective segmentation 

prediction overlays from cortex (A-B’’) and medulla (C-D’’) of human biopsies with 

acute tubular damage.  


