## Supplementary material – Gritter et al.

**Table S1:** Baseline characteristics associated with a smaller or lager increase in plasma

 potassium after KCl supplementation.

**Table S2:** Treatment of participants with plasma potassium > 6.0 mmol/L after KCl supplementation.

Figure S1: Flowchart of screened and included patients.

**Figure S2:** Change in urine potassium ( $K^+$ ) excretion in participants with or without an increase in plasma  $K^+$  after KCl supplementation.

**Figure S3:** Change in plasma potassium ( $K^+$ ) after KCl supplementation classified by sex, presence of diabetes mellitus, and the use of renin-angiotensin inhibitors, beta blockers, or diuretics.

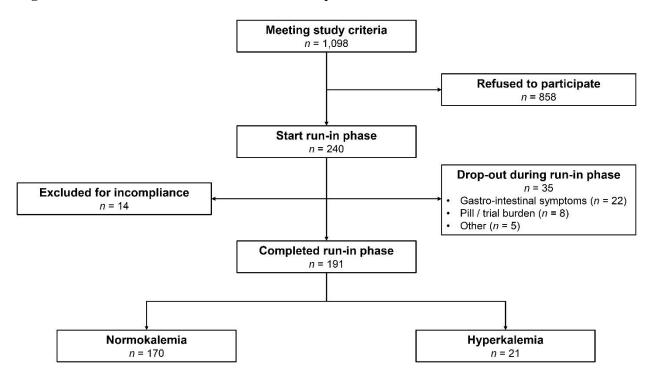
**Figure S4:** Correlations between the change in plasma potassium (K<sup>+</sup>) after KCl supplementation with age and selected baseline laboratory measurements.

**Figure S5:** Exploratory analysis of baseline characteristics that were associated with a smaller or lager increase in plasma potassium after KCl supplementation for two weeks with the addition of ethnicity.

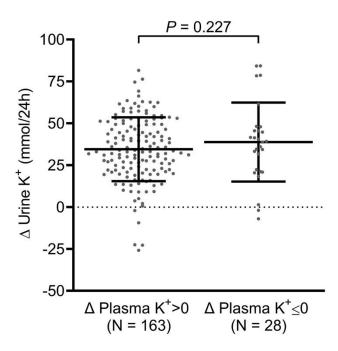
**Figure S6:** Change in urine potassium (K<sup>+</sup>) excretion in patients with or without hyperkalemia after KCl supplementation.

**Figure S7:** Correlations between the change in office systolic blood pressure (BP) with baseline blood pressure, urinary sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) excretion, and estimated glomerular filtration rate (eGFR).

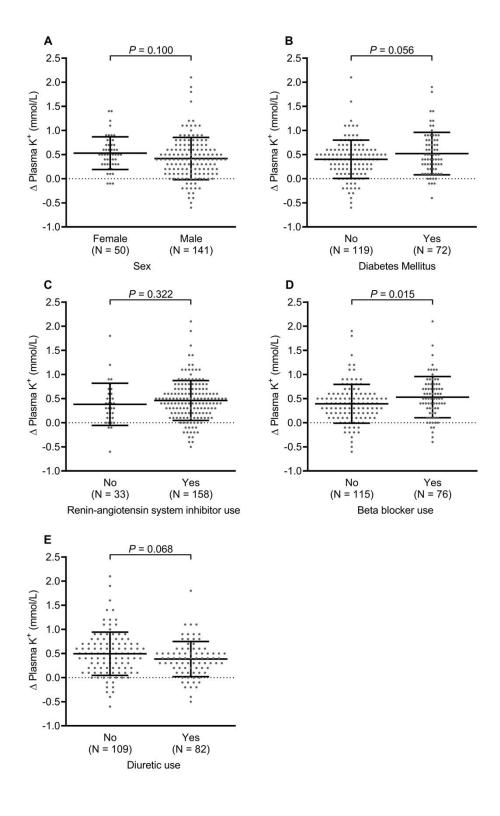
**Table S1:** Baseline characteristics associated with a smaller or lager increase in plasma


 potassium after KCl supplementation.

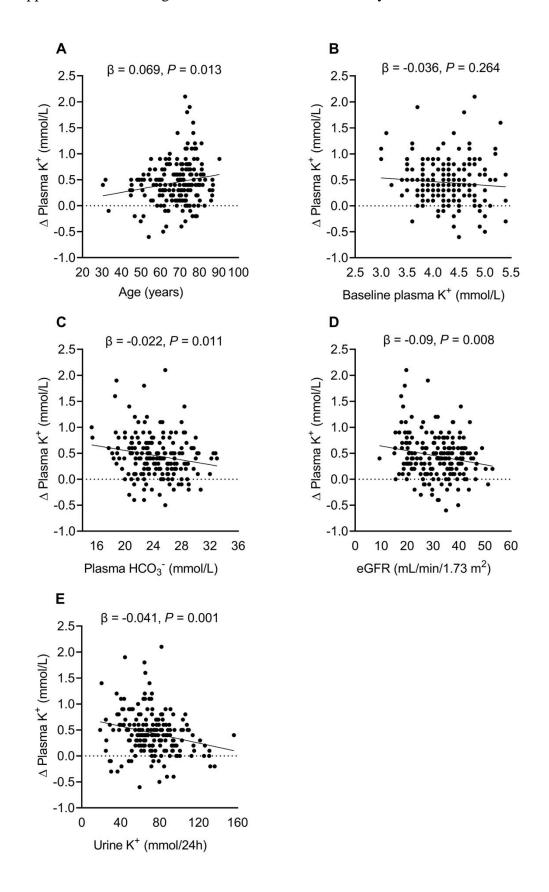
| Variable                            | Univariable regression  |       | Multivariable regression |       |
|-------------------------------------|-------------------------|-------|--------------------------|-------|
|                                     | β (95% CI)              | P     | β (95% CI)               | P     |
| Female sex                          | 0.112 (-0.022, 0.246)   | 0.100 | 0.091 (-0.042, 0.224)    | 0.182 |
| Type 2 diabetes mellitus            | 0.118 (-0.003, 0.239)   | 0.056 | 0.060 (-0.058, 0.177)    | 0.320 |
| Renin-angiotensin system            | 0.079 (-0.077, 0.235)   | 0.322 | 0.175 (0.027, 0.323)     | 0.021 |
| inhibitor use                       |                         |       |                          |       |
| Beta blocker use                    | 0.147 (0.028, 0.266)    | 0.015 | 0.110 (-0.005, 0.225)    | 0.062 |
| Diuretic use                        | -0.110 (-0.229, 0.008)  | 0.068 | -0.152 (-0.270, -0.035)  | 0.011 |
| Age, per 10 years increase          | 0.069 (0.015, 0.123)    | 0.013 | 0.068 (0.010, 0.126)     | 0.021 |
| Baseline plasma potassium, per      | -0.036 (-0.098, 0.027)  | 0.264 | -0.114 (-0.183, -0.045)  | 0.001 |
| 0.5 mmol/L increase                 |                         |       |                          |       |
| Baseline plasma bicarbonate,        | -0.022 (-0.039, -0.005) | 0.011 | -0.021 (-0.040, -0.002)  | 0.033 |
| mmol/L                              |                         |       |                          |       |
| Baseline eGFR, per 10               | -0.090 (-0.157, -0.023) | 0.008 | -0.069 (-0.138, 0.001)   | 0.053 |
| mL/min/1.73 m <sup>2</sup> increase |                         |       |                          |       |
| Baseline urine potassium, per       | -0.041 (-0.064, -0.017) | 0.001 | -0.021 (-0.046, 0.003)   | 0.089 |
| 10 mmol/day increase                |                         |       |                          |       |


**Table S2:** Treatment of participants with plasma potassium > 6.0 mmol/L after KCl supplementation.

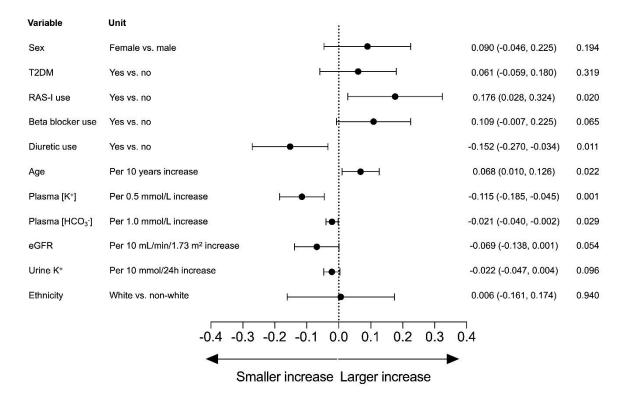
| Participant | Plasma potassium  | Treatment                        | Plasma       |
|-------------|-------------------|----------------------------------|--------------|
|             | after 2 weeks KCl |                                  | potassium at |
|             | supplementation   |                                  | follow-up    |
| 5035        | 6.2 mmol/L        | Sodium bicarbonate 3 x 1 g/day   | 4.9 mmol/L   |
|             |                   | for 2 days                       |              |
| 7038        | 6.4 mmol/L        | Sodium polystyrene sulfonate 2 x | 3.9 mmol/L   |
|             |                   | 30 g/day for 3 days; temporary   |              |
|             |                   | discontinuation of losartan      |              |
| 7041        | 6.9 mmol/L        | Sodium polystyrene sulfonate 2 x | 4.3 mmol/L   |
|             |                   | 30 g/day for 3 days; temporary   |              |
|             |                   | discontinuation of irbesartan    |              |
| 8069        | 6.3 mmol/L        | Sodium polystyrene sulfonate 1 x | 4.9 mmol/L   |
|             |                   | 15 g/day for 3 days; temporary   |              |
|             |                   | discontinuation of lisinopril    |              |
| 8103        | 6.9 mmol/L        | Sodium polystyrene sulfonate 2 x | 3.9 mmol/L   |
|             |                   | 30 g/day; temporary              |              |
|             |                   | discontinuation of lisinopril    |              |


Figure S1: Flowchart of screened and included patients.

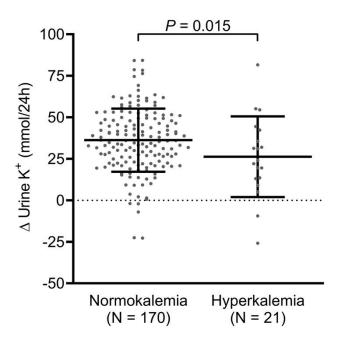



**Figure S2:** Change in urine potassium ( $K^+$ ) excretion in participants with or without an increase in plasma  $K^+$  concentration after KCl supplementation.

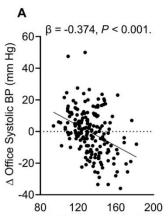



**Figure S3:** Change in plasma potassium ( $K^+$ ) after KCl supplementation classified by sex, presence of diabetes mellitus, and the use of renin-angiotensin inhibitors, beta blockers, or diuretics.

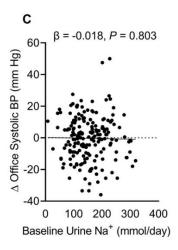


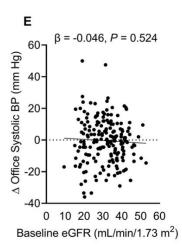

**Figure S4:** Correlations between the change in plasma potassium (K<sup>+</sup>) after KCl supplementation with age and selected baseline laboratory measurements.

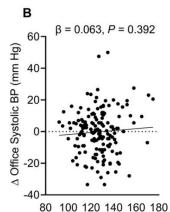



**Figure S5:** Exploratory analysis of baseline characteristics that were associated with a smaller or lager increase in plasma potassium after KCl supplementation for two weeks with the addition of ethnicity.

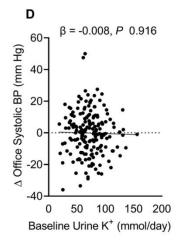



**Figure S6:** Change in urine potassium (K<sup>+</sup>) excretion in patients with or without hyperkalemia after KCl supplementation.





**Figure S7**: Correlations between the change in office systolic blood pressure (BP) after potassium chloride supplementation with baseline office and 24-hour systolic blood pressure, urinary sodium (Na<sup>+</sup>) and potassium (K<sup>+</sup>) excretion, and estimated glomerular filtration rate (eGFR).




Baseline Office Systolic BP (mm Hg)







Baseline 24h Systolic BP (mm Hg)

