Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Subject Collections
    • JASN Podcasts
    • Archives
    • Saved Searches
    • ASN Meeting Abstracts
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Subscriptions
  • More
    • About JASN
    • Alerts
    • Advertising
    • Editorial Fellowship Program
    • Feedback
    • Reprints
    • Impact Factor
  • ASN Kidney News
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Subject Collections
    • JASN Podcasts
    • Archives
    • Saved Searches
    • ASN Meeting Abstracts
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Subscriptions
  • More
    • About JASN
    • Alerts
    • Advertising
    • Editorial Fellowship Program
    • Feedback
    • Reprints
    • Impact Factor
  • ASN Kidney News
  • Follow JASN on Twitter
  • Visit ASN on Facebook
  • Follow JASN on RSS
  • Community Forum
Clinical Research
You have accessRestricted Access

CLDN16 Genotype Predicts Renal Decline in Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis

Martin Konrad, Jianghui Hou, Stefanie Weber, Jörg Dötsch, Jameela A. Kari, Tomas Seeman, Eberhard Kuwertz-Bröking, Amira Peco-Antic, Velibor Tasic, Katalin Dittrich, Hammad O. Alshaya, Rodo O. von Vigier, Sabina Gallati, Daniel A. Goodenough and André Schaller
JASN January 2008, 19 (1) 171-181; DOI: https://doi.org/10.1681/ASN.2007060709
Martin Konrad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jianghui Hou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefanie Weber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jörg Dötsch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jameela A. Kari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomas Seeman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eberhard Kuwertz-Bröking
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amira Peco-Antic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Velibor Tasic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katalin Dittrich
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hammad O. Alshaya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rodo O. von Vigier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sabina Gallati
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel A. Goodenough
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
André Schaller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data Supps
  • Info & Metrics
  • View PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    (A) Genomic organization of CLDN16. Mutations are depicted above the schematic presentation of CLDN16 (novel mutations in bold). (B) Claudin-16 protein model deduced from hydrophilicity plots. Amino acid residues affected by novel missense mutations are underlined. CL mutations are depicted in black; PL mutations are depicted in gray.

  • Figure 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2.

    CLDN16 mutations resulting in trafficking defects. Epifluorescence images showing mistargeted localization of claudin-16 mutants in LLC-PK1 and MDCK cells. M71T is in the lysosome with a punctuate distribution toward periphery of the cell. C131R shows a reticular cytoplasmic and perinuclear distribution indicating retention in the endoplasmic reticulum. Bar = 10 μm.

  • Figure 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3.

    Dilution potential of individual CLDN16 missense mutations after heterologous expression in LLC-PK1 cells. Values are given as percentage relative to wild-type claudin-16 function. New mutations are underlined; the remaining mutations were taken from Hou et al.22 WT, wild-type.

  • Figure 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4.

    (A) Age at manifestation of first clinical symptoms. (B) Progression of renal failure expressed as loss of GFR (ml/min per 1.73 m2/yr). Data are means ± SEM, ANOVA was performed only between the groups with categorized mutations on both alleles. *P < 0.05; **P < 0.01.

  • Figure 5.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 5.

    Progression of renal failure over time in FHHNC according to the mutation category. Data are means ± SEM.

  • Figure 6.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 6.

    Serum intact PTH levels with corresponding GFR in patients with FHHNC and control subjects. Normal range is indicated in gray.

Tables

  • Figures
    • View popup
    Table 1.

    Molecular analysis of the new patients with FHHNC

    PatientGenderOriginConsanguinityZygosityNucleotide ChangePredicted Protein Change
    F29FGerman−Homozygous453(TTG→TTT)p.L151F
    F30FGerman−Homozygous453(TTG→TTT)p.L151F
    F32-1MTurkish+Homozygous715(GGA→AGA)p.G239R
    F32-2MTurkish+Homozygous715(GGA→AGA)p.G239R
    F33MGerman−Homozygous453(TTG→TTT)p.L151F
    F34FGerman−Compound heterozygous385(CGC→TGC)-453(TTG→TTT)p.R129Ca-p.L151F
    F37-1MGerman−Heterozygous453(TTG→TTT)p.L151F
    F37-2MGerman−Heterozygous453(TTG→TTT)p.L151F
    F56F?+Homozygous341(CGA→AGA)p.R114Qa
    F60FGerman−Compound heterozygous453(TTG→TTT)-625(GCT→ACT)p.L151F-p.A209T
    F61-1MGerman−Heterozygous453(TTG→TTT)p.L151F
    F61-2FGerman−Heterozygous453(TTG→TTT)p.L151F
    F62MArab+Homozygous236delGp.A80fsX91a
    F64FPolish−Compound heterozygous329(AGC→AGG)-453(TTG→TTT)p.L151F-p.S110Ra
    F66MTurkish+Homozygous710(TGG→TAG)p.W237Xa
    F63-1MBritish−Compound heterozygous646(CGT→TGT)-784 + 1(G→T)p.R216C-splice sitea
    F69-2FBritish−Compound heterozygous646(CGT→TGT)-784 + 1(G→T)p.R216C-splice sitea
    F70FTurkish+Homozygous679(GGA→CGA)p.G227Ra
    F71MBulgarian−Compound heterozygous434(CTG→CCG)- 453(TTG→TTT)p.L145P-p.L151F
    F72FEnglish/German−Compound heterozygous408–410delCAT-453(TTG→TTT)p.I137dela-p.L151F
    F73FGerman−Heterozygous385(CGC→TGC)p.R129Ca-?
    F74-1MSerbian−Homozygous453(TTG→TTT)p.L151F
    F74-2FSerbian−Homozygous453(TTG→TTT)p.L151F
    F74-3MSerbian−Homozygous453(TTG→TTT)p.L151F
    F77MGerman−Compound heterozygous453(TTG→TTT)-263(GGG→GAG)p.L151F-p.G88E
    F78-1MArab+Homozygous212(ATG→ACG)p.M71T,a loss of start
    F79-1FArab+Homozygous212(ATG→ACG)p.M71T,a loss of start
    F80-1FArab+Homozygous212(ATG→ACG)p.M71T,a loss of start
    F80-2FArab+Homozygous212(ATG→ACG)p.M71T,a loss of start
    F80-3MArab+Homozygous212(ATG→ACG)p.M71T,a loss of start
    F81-1FArab+Homozygous646(CGT→TGT)p.R216Ca
    F81-2MArab+Homozygous646(CGT→TGT)p.R216Ca
    F83-1FMacedonian+Homozygous453(TTG→TTT)p.L151F
    F83-2FMacedonian+Homozygous453(TTG→TTT)p.L151F
    F83-3MMacedonian+Homozygous453(TTG→TTT)p.L151F
    F87-1MTurkish+Homozygous453(TTG→TTT)p.L151F
    F87-2MTurkish+Homozygous453(TTG→TTT)p.L151F
    F87-3MTurkish+Homozygous453(TTG→TTT)p.L151F
    F88-1MTurkish+Homozygous385(CGC→TGC)p.C131Ra
    • ↵a New mutation.

    • View popup
    Table 2.

    Functional analysis of CLDN16 mutations (expressed in LLC-PK1 cells)a

    MutationPositionTERDilution PotentialPNa/PClPNa (10−6 cm/s)PCl (10−6 cm/s)LocalizationFunction
    Vector—61.0 ± 2.1−8.13 ± 0.19b0.296 ± 0.010b6.866 ± 0.184b23.220 ± 0.182−−
    WT—33.0 ± 1.52.97 ± 0.191.500 ± 0.03833.363 ± 0.34622.257 ± 0.346TJ+
    M71TN terminus60.0 ± 2.5−7.83 ± 0.12b0.313 ± 0.007b7.282 ± 0.121b23.307 ± 0.123LysosomeCL
    G88EFirst TMD50.7 ± 2.9−7.13 ± 0.09b0.354 ± 0.005b9.398 ± 0.105b26.590 ± 0.106TJCL
    S110RFirst ECL38.3 ± 0.9−3.30 ± 0.12b0.637 ± 0.010b18.787 ± 0.188b29.513 ± 0.188TJPL
    R114QFirst ECL34.7 ± 3.7−2.33 ± 0.09b0.728 ± 0.009b22.100 ± 0.153b30.340 ± 0.153TJPL
    C131RFirst ECL60.7 ± 3.0−7.50 ± 0.06b0.332 ± 0.003b7.493 ± 0.057b22.597 ± 0.055ERCL
    I137delFirst ECL41.7 ± 2.3−4.57 ± 0.09b0.530 ± 0.007b15.143 ± 0.130b28.557 ± 0.130TJPL
    H141DFirst ECL39.3 ± 2.6−3.17 ± 0.09b0.649 ± 0.008b18.513 ± 0.141b28.547 ± 0.141TJPL
    L151WFirst ECL39.7 ± 0.9−1.97 ± 0.18b0.766 ± 0.018b19.903 ± 0.271b25.983 ± 0.273TJPL
    R216CSecond ECL44.3 ± 2.7−5.10 ± 0.20b0.490 ± 0.015b13.710 ± 0.280b28.003 ± 0.277TJCL
    G227RSecond ECL39.0 ± 1.0−3.20 ± 0.06b0.646 ± 0.005b18.460 ± 0.092b28.600 ± 0.092TJPL
    • ↵a Number of independent monolayers, n = 3. TER, transepithelial resistance; P, permeability; TMD, transmembrane domain; ECL, extracellular loop; ER, endoplasmic reticulum.

    • ↵b P < 0.05, mutant versus WT.

    • View popup
    Table 3.

    Functional consequences of the CLDN16 mutations

    PatientGenderPredicted ChangePredicted FunctionPatientGenderPredicted ChangePredicted Function
    Allele 1Allele 2Allele 1Allele 2
    F03Fp.G198Dp.G198DCL/CLF02-1Fp.L151Fp.L151WPL/PL
    F04Fp.G239Rp.G239RCL/CLF02-2Mp.L151Fp.L151WPL/PL
    F09-1Fp.R216Tp.R216TCL/CLF07-1Mp.L151Fp.L151FPL/PL
    F09-2Mp.R216Tp.R216TCL/CLF07-2Mp.L151Fp.L151FPL/PL
    F10Fp.L145Pp.L145PCL/CLF08-1Mp.H141Dp.H141DPL/PL
    F11Fp.G239Rp.G239RCL/CLF08-2Fp.H141Dp.H141DPL/PL
    F15Fp.R149Lp.R149LCL/CLF13Mp.L151Fp.L151FPL/PL
    F21-1Mp.L145Pp.D123fsCL/CLF14-1Fp.L151Fp.L151FPL/PL
    F21-2Fp.L145Pp.D123fsCL/CLF14-2Fp.L151Fp.L151FPL/PL
    F32-1Mp.G239Rp.G239RCL/CLF17Fp.L151Fp.L151FPL/PL
    F32-2Mp.G239Rp.G239RCL/CLF18Fp.L151Fp.L151FPL/PL
    F62Mp.A80fsX91p.A80fsX91CL/CLF22Fp.L151Fp.L151FPL/PL
    F66Mp.W237Xp.W237XCL/CLF25Mp.L151Fp.L151FPL/PL
    F69-1Mp.R216CSplice siteCL/CLF29Fp.L151Fp.L151FPL/PL
    F69-2Fp.R216CSplice siteCL/CLF30Fp.L151Fp.L151FPL/PL
    F78-1Mp.M71Tap.M71TaCL/CLF33Mp.L151Fp.L151FPL/PL
    F79-1Fp.M71Tap.M71TaCL/CLF56Fp.R114Qp.R114QPL/PL
    F80-1Fp.M71Tap.M71TaCL/CLF60Fp.L151Fp.A209TPL/PL
    F80-2Fp.M71Tap.M71TaCL/CLF64Fp.L151Fp.S110RPL/PL
    F80-3Mp.M71Tap.M71TaCL/CLF70Fp.G227Rp.G227RPL/PL
    F81-1Fp.M71Tap.M71TaCL/CLF74-1Mp.L151Fp.L151FPL/PL
    F81-2Mp.M71Tap.M71TaCL/CLF74-2Fp.L151Fp.L151FPL/PL
    F88-1Mp.C131Rp.C131RCL/CLF74-3Mp.L151Fp.L151FPL/PL
    F83-1Fp.L151Fp.L151FPL/PL
    F01-1Fp.L151Fp.W117XPL/CLF83-2Fp.L151Fp.L151FPL/PL
    F01-2Fp.L151Fp.W117XPL/CLF83-3Mp.L151Fp.L151FPL/PL
    F05-1Fp.L151Fp.L145PPL/CLF87-1Mp.L151Fp.L151FPL/PL
    F05-2Fp.L151Fp.L145PPL/CLF87-2Mp.L151Fp.L151FPL/PL
    F06Mp.L151Fp.G239RPL/CLF87-3Mp.L151Fp.L151FPL/PL
    F12Mp.A209Tp.L145PPL/CL
    F16Fp.L151FSplice sitePL/CLF34Fp.R129Cp.L151FPL/X
    F20Mp.L151Fp.L145PPL/CLF37-1Mp.L151F?PL/X
    F23Mp.L151Fp.S235PPL/CLF37-2Mp.L151F?PL/X
    F71Mp.L151Fp.L145PPL/CLF61-1Mp.L151F?PL/X
    F72Fp.L151Fp.I137delPL/CLF61-2Fp.L151F?PL/X
    F77Mp.L151Fp.G88QPL/CLF19MSplice site?CL/X
    • ↵a Loss of translation start site.

    • View popup
    Table 4.

    Genotype/phenotype correlation in FHHNC, subgroups separately

    GenotypeCL/CL (n = 23)PL/PL (n = 29)PL/CL (n = 12)PL/X (n = 5)
    Age at onset (yr; mean [95% CI])2.2 (1.1 to 3.3)5.7 (3.3 to 8.2)a4.9 (2.3 to 7.6)5.9 (2.6 to 9.2)
    Loss of GFR/yr (ml/min per 1.73 m2; mean [95% CI])7.3 (5.0 to 9.6)3.3 (1.6 to 4.9)b3.0 (1.1 to 4.9)a2.9 (1.6 to 4.1)
    Renal function at end of study
        GFR >60 ml/min per 1.73 m29% (2/22)55% (16/29)b5/124/5
        GFR <60 ml/min per 1.73 m250% (11/22)17% (5/29)b3/121/5
        ESRD41% (9/22)18% (8/29)b4/120/5
    ESRD at 15 yr54% (7/13)25% (5/20)1/10
    ESRD at 20 yr70% (7/10)36% (5/14)3/6
    • ↵a P < 0.05 versus CL/CL.

    • ↵b P < 0.01 versus CL/CL (ANOVA with Bonferroni multiple comparison test).

    • View popup
    Table 5.

    Genotype/phenotype correlation in FHHNC

    GenotypeCL (n = 23)PL (n = 46)P
    Age at onset (yr; mean [95% CI])2.2 (1.1 to 3.3)5.6 (3.6 to 7.0)<0.01
    Loss of GFR/yr (ml/min per 1.73 m2; mean [95% CI])7.3 (5.0 to 9.6)2.9 (1.8 to 4.3)<0.01
    Renal function at end of study<0.01
        GFR >60 ml/min per 1.73 m29% (2/22)54% (25/46)
        GFR <60 ml/min per 1.73 m250% (11/22)20% (9/46)
        ESRD41% (9/22)26% (12/46)
    ESRD at 15 yr54% (7/13)20% (6/30)<0.05
    ESRD at 20 yr70% (7/10)25% (8/20)NS
    Lowest serum Mg (mmol/L; mean [95% CI])0.40 (0.35 to 0.45)0.41 (0.38 to 0.45)NS
    Urinary Mg excretion (μ mol/kg per d; mean [95% CI])188 (92 to 283)153 (123 to 183)NS
    Lowest serum Ca (mmol/L; mean [95% CI])2.11 (1.96 to 2.27)2.17 (2.1 to 2.25)NS
    Urinary Ca excretion (μ mol/kg per d; mean [95% CI])314 (181 to 446)200 (168 to 233)<0.01
    Urinary Ca/creatinine (mol/mol; mean [95% CI])2.46 (1.37 to 3.55)1.52 (1.26 to 1.79)<0.05
    Intact PTH (pg/ml; mean [95% CI])249 (122 to 376)169 (117 to 220)NS
    Follow-up time (yr; mean [95% CI])13.4 (9.2 to 17.6)11.9 (9.2 to 14.7)NS
PreviousNext
Back to top

In this issue

Journal of the American Society of Nephrology: 19 (1)
Journal of the American Society of Nephrology
Vol. 19, Issue 1
January 2008
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
View Selected Citations (0)
Print
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in JASN.
Enter multiple addresses on separate lines or separate them with commas.
CLDN16 Genotype Predicts Renal Decline in Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
CLDN16 Genotype Predicts Renal Decline in Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis
Martin Konrad, Jianghui Hou, Stefanie Weber, Jörg Dötsch, Jameela A. Kari, Tomas Seeman, Eberhard Kuwertz-Bröking, Amira Peco-Antic, Velibor Tasic, Katalin Dittrich, Hammad O. Alshaya, Rodo O. von Vigier, Sabina Gallati, Daniel A. Goodenough, André Schaller
JASN Jan 2008, 19 (1) 171-181; DOI: 10.1681/ASN.2007060709

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
CLDN16 Genotype Predicts Renal Decline in Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis
Martin Konrad, Jianghui Hou, Stefanie Weber, Jörg Dötsch, Jameela A. Kari, Tomas Seeman, Eberhard Kuwertz-Bröking, Amira Peco-Antic, Velibor Tasic, Katalin Dittrich, Hammad O. Alshaya, Rodo O. von Vigier, Sabina Gallati, Daniel A. Goodenough, André Schaller
JASN Jan 2008, 19 (1) 171-181; DOI: 10.1681/ASN.2007060709
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • RESULTS
    • DISCUSSION
    • CONCISE METHODS
    • Disclosures
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data Supps
  • Info & Metrics
  • View PDF

More in this TOC Section

  • In Patients with Membranous Lupus Nephritis, Exostosin-Positivity and Exostosin-Negativity Represent Two Different Phenotypes
  • Missing Self-Induced Activation of NK Cells Combines with Non-Complement-Fixing Donor-Specific Antibodies to Accelerate Kidney Transplant Loss in Chronic Antibody-Mediated Rejection
  • Intracellular Phosphate and ATP Depletion Measured by Magnetic Resonance Spectroscopy in Patients Receiving Maintenance Hemodialysis
Show more Clinical Research

Cited By...

  • Phosphorylated claudin-16 interacts with Trpv5 and regulates transcellular calcium transport in the kidney
  • The RING finger- and PDZ domain-containing protein PDZRN3 controls localization of the Mg2+ regulator claudin-16 in renal tube epithelial cells
  • Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis: Phenotype-Genotype Correlation and Outcome in 32 Patients with CLDN16 or CLDN19 Mutations
  • Renal, Ocular, and Neuromuscular Involvements in Patients with CLDN19 Mutations
  • Google Scholar

Similar Articles

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Annual Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • Editorial Fellowship Program
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • JASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About JASN
  • JASN Email Alerts
  • JASN Key Impact Information
  • JASN Podcasts
  • JASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Password/Email Address Changes
  • Subscribe

© 2021 American Society of Nephrology

Print ISSN - 1046-6673 Online ISSN - 1533-3450

Powered by HighWire