Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Article Collections
    • JASN Podcasts
    • Archives
    • Saved Searches
    • ASN Meeting Abstracts
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Subscriptions
  • More
    • About JASN
    • Alerts
    • Advertising
    • Editorial Fellowship Team
    • Feedback
    • Reprints
    • Impact Factor
  • ASN Kidney News
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Article Collections
    • JASN Podcasts
    • Archives
    • Saved Searches
    • ASN Meeting Abstracts
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Subscriptions
  • More
    • About JASN
    • Alerts
    • Advertising
    • Editorial Fellowship Team
    • Feedback
    • Reprints
    • Impact Factor
  • ASN Kidney News
  • Follow JASN on Twitter
  • Visit ASN on Facebook
  • Follow JASN on RSS
  • Community Forum
You have accessRestricted Access

Peritoneal transport physiology: insights from basic research.

M F Flessner
JASN August 1991, 2 (2) 122-135;
M F Flessner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • View PDF
Loading

Abstract

Clinical uses of the peritoneal cavity, such as i.p. chemotherapy or peritoneal dialysis, depend on underlying physiological mechanisms of transport between the blood and the peritoneal cavity. Clinical models of peritoneal transport have focused on an idealized "peritoneal membrane." However, such a membrane does not physically exist. Transport actually occurs between the peritoneal cavity and blood which is contained in discrete capillaries distributed in the tissue interstitium surrounding the cavity. To integrate the properties of the capillaries and the interstitium, the "distributed model" approach couples pore theory, which simulates transendothelial transport, with diffusion and convection within the tissue space. The distributed theory can explain why the peritoneal membrane, when compared with the artificial kidney, appears tight to urea but leaky to protein. The additional resistance to urea transport has been attributed to "unstirred layers" adjacent to the peritoneal membrane. These can now be defined physiologically by examining diffusion in the tissue space. Absolute rates of convection into and out of the cavity cannot yet be accurately predicted, but the physiological forces can be specified. Net "ultrafiltration" during dialysis results from not only high osmotic pressure in the peritoneal dialysate but also from a small but significant hydrostatic pressure which drives convection in the opposite direction. Recent implications from protein absorption studies that lymphatics are the cause of the decrease in net ultrafiltration are only partly true. Analysis of data from the tissue space has shown that the deposition of protein occurs from the cavity into the tissue interstitium with a slow uptake into lymphatics.

PreviousNext
Back to top

In this issue

Journal of the American Society of Nephrology
Vol. 2, Issue 2
1 Aug 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
View Selected Citations (0)
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in JASN.
Enter multiple addresses on separate lines or separate them with commas.
Peritoneal transport physiology: insights from basic research.
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Peritoneal transport physiology: insights from basic research.
M F Flessner
JASN Aug 1991, 2 (2) 122-135;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Peritoneal transport physiology: insights from basic research.
M F Flessner
JASN Aug 1991, 2 (2) 122-135;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • View PDF

Cited By...

  • Length of Time on Peritoneal Dialysis and Encapsulating Peritoneal Sclerosis -- Position Paper for ISPD: 2017 Update
  • Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis
  • Alterations of Intercellular Junctions in Peritoneal Mesothelial Cells from Patients Undergoing Dialysis: Effect of Retinoic Acid
  • COMPARING CONTINUOUS VENOVENOUS HEMODIAFILTRATION AND PERITONEAL DIALYSIS IN CRITICALLY ILL PATIENTS WITH ACUTE KIDNEY INJURY: A PILOT STUDY
  • Acute Peritoneal Dialysis in Rats Results in a Marked Reduction of Interstitial Colloid Osmotic Pressure
  • Blood Flow Limitation In Vivo of Small Solute Transfer during Peritoneal Dialysis in Rats
  • Google Scholar

Similar Articles

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Annual Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • Editorial Fellowship Program
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • JASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About JASN
  • JASN Email Alerts
  • JASN Key Impact Information
  • JASN Podcasts
  • JASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Password/Email Address Changes
  • Subscribe

© 2021 American Society of Nephrology

Print ISSN - 1046-6673 Online ISSN - 1533-3450

Powered by HighWire