Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • JASN Podcasts
    • Article Collections
    • Archives
    • ASN Meeting Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Editorial Fellowship
    • Editorial Fellowship Team
    • Editorial Fellowship Application Process
  • More
    • About JASN
    • Advertising
    • Alerts
    • Feedback
    • Impact Factor
    • Reprints
    • Subscriptions
  • ASN Kidney News
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • JASN Podcasts
    • Article Collections
    • Archives
    • ASN Meeting Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Editorial Fellowship
    • Editorial Fellowship Team
    • Editorial Fellowship Application Process
  • More
    • About JASN
    • Advertising
    • Alerts
    • Feedback
    • Impact Factor
    • Reprints
    • Subscriptions
  • ASN Kidney News
  • Follow JASN on Twitter
  • Visit ASN on Facebook
  • Follow JASN on RSS
  • Community Forum
You have accessRestricted Access

The amino acid-induced alteration in renal hemodynamics is glucagon independent.

T M Nammour, P E Williams, K F Badr, N N Abumrad and H R Jacobson
JASN August 1991, 2 (2) 164-171;
T M Nammour
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P E Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K F Badr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N N Abumrad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H R Jacobson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • View PDF
Loading

Abstract

The amino acid-induced alteration in renal hemodynamics is glucagon independent. An oral protein load or i.v. administration of an amino acid solution results in an increase in glomerular filtration rate and renal plasma flow in both humans and animals. The change in renal hemodynamics has been attributed to the simultaneous induced rise in glucagon. Whether glucagon is necessary for the change in renal hemodynamics after an amino acid infusion was investigated. Two groups of dogs were used, and the experimental protocol was divided into four different periods (P1 through P4). Group I animals received an amino acid solution, and group II dogs received an equiosmolar solution of mannitol. In P1, the animals in both groups were hydrated with normal saline, whereas, in P2, the pancreatic clamp technique was used to fix the plasma glucagon levels. P2 served as a basal period in which measurements of glomerular filtration rate, renal plasma flow, and plasma glucagon were obtained. IN P3, group I animals received amino acid solution, and group II received mannitol and served as controls. In this period, an increase of 32 and 27% in glomerular filtration rate and renal plasma flow, respectively, in group I dogs was observed, whereas there were no significant changes in these parameters in group II. During this period, plasma glucagon remained still at basal level in both groups. In P4, an infusion of glucagon at a rate of 5 ng/kg/min was added to both groups. This maneuver resulted in a fourfold increase in plasma glucagon levels in both groups.(ABSTRACT TRUNCATED AT 250 WORDS)

PreviousNext
Back to top

In this issue

Journal of the American Society of Nephrology
Vol. 2, Issue 2
1 Aug 1991
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
View Selected Citations (0)
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in JASN.
Enter multiple addresses on separate lines or separate them with commas.
The amino acid-induced alteration in renal hemodynamics is glucagon independent.
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
The amino acid-induced alteration in renal hemodynamics is glucagon independent.
T M Nammour, P E Williams, K F Badr, N N Abumrad, H R Jacobson
JASN Aug 1991, 2 (2) 164-171;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The amino acid-induced alteration in renal hemodynamics is glucagon independent.
T M Nammour, P E Williams, K F Badr, N N Abumrad, H R Jacobson
JASN Aug 1991, 2 (2) 164-171;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • View PDF

Cited By...

  • No citing articles found.
  • Google Scholar

Similar Articles

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Annual Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • Editorial Fellowship Program
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • JASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About JASN
  • JASN Email Alerts
  • JASN Key Impact Information
  • JASN Podcasts
  • JASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Password/Email Address Changes
  • Subscribe to ASN Journals

© 2021 American Society of Nephrology

Print ISSN - 1046-6673 Online ISSN - 1533-3450

Powered by HighWire