Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • JASN Podcasts
    • Article Collections
    • Archives
    • Kidney Week Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Editorial Fellowship
    • Editorial Fellowship Team
    • Editorial Fellowship Application Process
  • More
    • About JASN
    • Advertising
    • Alerts
    • Feedback
    • Impact Factor
    • Reprints
    • Subscriptions
  • ASN Kidney News
  • Other
    • ASN Publications
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • ASN Publications
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • JASN Podcasts
    • Article Collections
    • Archives
    • Kidney Week Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Editorial Fellowship
    • Editorial Fellowship Team
    • Editorial Fellowship Application Process
  • More
    • About JASN
    • Advertising
    • Alerts
    • Feedback
    • Impact Factor
    • Reprints
    • Subscriptions
  • ASN Kidney News
  • Follow JASN on Twitter
  • Visit ASN on Facebook
  • Follow JASN on RSS
  • Community Forum
Rapid Communications
You have accessRestricted Access

A Single-Cell Transcriptome Atlas of the Mouse Glomerulus

Nikos Karaiskos, Mahdieh Rahmatollahi, Anastasiya Boltengagen, Haiyue Liu, Martin Hoehne, Markus Rinschen, Bernhard Schermer, Thomas Benzing, Nikolaus Rajewsky, Christine Kocks, Martin Kann and Roman-Ulrich Müller
JASN August 2018, 29 (8) 2060-2068; DOI: https://doi.org/10.1681/ASN.2018030238
Nikos Karaiskos
1Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mahdieh Rahmatollahi
2Department II of Internal Medicine and Center for Molecular Medicine Cologne,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anastasiya Boltengagen
1Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Haiyue Liu
1Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin Hoehne
2Department II of Internal Medicine and Center for Molecular Medicine Cologne,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Martin Hoehne
Markus Rinschen
2Department II of Internal Medicine and Center for Molecular Medicine Cologne,
3Scripps Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bernhard Schermer
2Department II of Internal Medicine and Center for Molecular Medicine Cologne,
4Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
5Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Benzing
2Department II of Internal Medicine and Center for Molecular Medicine Cologne,
4Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
5Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nikolaus Rajewsky
1Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christine Kocks
1Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christine Kocks
Martin Kann
2Department II of Internal Medicine and Center for Molecular Medicine Cologne,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roman-Ulrich Müller
2Department II of Internal Medicine and Center for Molecular Medicine Cologne,
4Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and
5Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany; and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Roman-Ulrich Müller
  • Article
  • Figures & Data Supps
  • Info & Metrics
  • View PDF
Loading

Abstract

Background Three different cell types constitute the glomerular filter: mesangial cells, endothelial cells, and podocytes. However, to what extent cellular heterogeneity exists within healthy glomerular cell populations remains unknown.

Methods We used nanodroplet-based highly parallel transcriptional profiling to characterize the cellular content of purified wild-type mouse glomeruli.

Results Unsupervised clustering of nearly 13,000 single-cell transcriptomes identified the three known glomerular cell types. We provide a comprehensive online atlas of gene expression in glomerular cells that can be queried and visualized using an interactive and freely available database. Novel marker genes for all glomerular cell types were identified and supported by immunohistochemistry images obtained from the Human Protein Atlas. Subclustering of endothelial cells revealed a subset of endothelium that expressed marker genes related to endothelial proliferation. By comparison, the podocyte population appeared more homogeneous but contained three smaller, previously unknown subpopulations.

Conclusions Our study comprehensively characterized gene expression in individual glomerular cells and sets the stage for the dissection of glomerular function at the single-cell level in health and disease.

  • glomerulus
  • single-cell RNA sequencing
  • scRNAseq
  • podocyte
  • transcriptome

Glomeruli are the key functional units of the kidney filtration apparatus. Within each glomerulus, a capillary tuft is structurally maintained by mesangial cells and provides a three-layered filtration barrier consisting of endothelial cells, the glomerular basement membrane, and podocytes.1,2 Although these three cell types within the glomerular tuft have long been established, it is as yet unknown whether individual cells within the glomerulus respond to cues to which they are physiologically exposed. Such cues include changing pressure gradients along the capillaries and mechanical strain on mesangial cells, which may differ depending on cell location relative to the glomerular vascular pole.3 Because BP adaptation and mechanoadaptation of glomerular cells are key determinants of kidney function and dysregulated in kidney disease, we tested whether glomerular cell type subsets can be identified by single-cell RNA sequencing in wild-type glomeruli. This technique allows for high-throughput transcriptome profiling of individual cells and is particularly suitable for identifying novel cell types as well as subsets and novel marker genes of known cell populations.4–6

Methods

Glomerular isolation and preparation of single-cell suspensions were carried out as described7 on 8-week-old wild-type CD1 male mice. Flow-sorted cells were dehydrated in methanol,8 stored and shipped at −70°C, and rehydrated for highly parallel single-cell transcriptome profiling by Drop-seq.4,8 This method predominantly detects 3′ ends of polyadenylated mRNA as well as long noncoding RNA molecules. Single-cell data were processed, and genes were quantified with Drop-seq tools v. 1.124 and further analyzed with “dropbead”8 and Seurat.5 Marker gene identification was carried out with Seurat function “FindAllMarkers”5 and visual inspection of violin plots as well as images from the Human Protein Atlas.9 Immunofluorescence staining was carried out on glomeruli of Nphs2-Cre/mTmG reporter mice10 using affinity-purified rabbit antibodies. Images were obtained using confocal microscopy. Animal experiments were approved by the Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV NRW, AZ 2013.A 375). Statistical methods were used as indicated.

Raw and processed datasets are available from the Gene Expression Omnibus repository (GSE111107). The interactive online database is available at https://shiny.mdc-berlin.de/mgsca/.

Results

Figure 1A shows the study design. We isolated glomeruli by magnetic bead perfusion followed by magnetic separation and rigorous washing (Supplemental Figure 1A),11 generated single-cell suspensions by enzymatic digestion, and performed highly parallel single-cell RNA sequencing using the Drop-seq method.4 A total of 14,722 cells expressing >250 genes and 350 transcripts (defined as unique molecular identifiers) were obtained from four independent biologic replicates (eight mice pooled per replicate). Median numbers of genes and transcripts detected were similar (Supplemental Figure 1B, Supplemental Table 1). Drop-seq works on the basis of Poisson-distributed limiting dilution, and thus, it generates cell doublets (estimated at approximately 10% at the cell concentration used).4,8,12 To obtain high-quality single-cell data, we used a previously developed algorithm to score cell type–specific marker genes12 (Supplemental Table 2) and removed 1768 probable doublets. The final dataset contained 12,954 cells, with a median of 630 genes and 950 unique molecular identifiers per cell at a sequencing depth of approximately 9400 aligned reads per cell (Supplemental Figure 1B, Supplemental Table 1).

Figure 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1.

Single-cell RNA-sequencing identifies the relevant cell populations in purified glomeruli. (A) Study design and workflow. (B) The plot shows a two-dimensional representation (tSNE: t-Distributed Stochastic Neighbor Embedding) of global relationships among approximately 13,000 single cells expressing >350 transcripts (unique molecular identifiers). Putative cell doublets were removed by scoring cell type–exclusive markers (Supplemental Material). Five clusters became apparent that correspond to known cell types present in glomeruli (12% endothelium [n=1556], 2% mesangium [n=216], and 80% podocytes [n=10,325]) or contaminating cells from kidney tissue (6% tubules [n=828] and 0.2% immune cells [n=29]). Regarding parietal cells, none of the published marker genes were detected in any of the clusters. Cell types were identified by assessing the top most variable genes in each cluster (Supplemental Table 2). (C) Distribution and relative expression of established marker genes (violin plots) for endothelium, mesangium, podocytes, and contaminating tubular and immune cells.(D) Expression of marker genes colored on the basis of normalized expression levels (gray, low; red, high).

As shown in Figure 1B, unsupervised clustering of the remaining 12,954 single cells identified five major cell clusters. On the basis of marker genes, three of these clusters corresponded to known glomerular cell populations: podocytes (80%), mesangial cells (2%), and endothelial cells (12%). The other two clusters corresponded to tubular cells (6%) and a small group of immune cells (0.2%). Glomerular cell type clusters showed specific expression of established marker genes (Figure 1, C and D, Supplemental Table 3), and all replicates contributed to the observed cell clusters (Supplemental Figure 1C). Hierarchical clustering of aggregated reads from all replicates and cell types indicated high correlations according to cell type and independent of the replicate (Supplemental Figure 1D). To control for effects of single-cell preparation, we compared single-cell RNAseq data with bulk polyA-RNAseq libraries prepared from glomeruli before and after dissociation into single cells (bulk1 and bulk2, respectively) (Figure 1A). Although the single-cell data showed good correlations with both bulk mRNAseq datasets (Supplemental Figure 1E), it became apparent that single-cell dissociation affected cell type abundance (Supplemental Figure 1, F and G), explaining an over-representation of podocytes relative to endothelial and mesangial cells (Figure 1B). (Tubules were not affected.) We also compared aggregated reads from our cell type–specific clusters with published mRNAseq datasets obtained from sorted cell populations on the basis of glomerular cell lineage tracing experiments7,13 (Supplemental Figure 1H). Although samples correlated best by sequencing method, pairwise correlations by cell type supported our cell type assignments.

We continued by characterizing glomerular cell types in more detail and aimed to identify novel cell-specific markers by assessing highly variable genes between clusters.4 Established cell-specific marker genes for endothelium, mesangium, and podocytes as well as genes described as relevant to the respective cell type in the literature (Supplemental Methods has details) were comprehensively reproduced as specifically expressed, validating our unsupervised clustering (Figure 2A, Supplemental Figure 2).7,14,15 Importantly, expression of several previously reported key podocyte genes did not seem to be exclusive to podocytes, a finding bearing important implications for future studies on the function of such genes in kidneys. Examples for such genes include Podxl (for which previously described endothelial expression was confirmed16), Actn4, and Itgb1 (Figure 2, Supplemental Figure 2). Consequently, we aimed to identify novel cell-specific markers for all three glomerular cell types (Figure 2B). A large proportion of these markers was corroborated on the protein level by immunostaining images obtained from the Human Protein Atlas (Figure 2B).9 Novel markers represent a wide variety of molecular functions, including the transcription factor Meis2 identified as specific to endothelial cells and disease genes, such as Pde3a (the gene mutated in autosomal dominant hypertension with brachydactyly, which was identified as specific to mesangial cells), as well as the E3-ubiquitin-ligase Wsb2, a novel podocyte marker. Taken together, we provide a detailed and comprehensive characterization of glomerular cell types at the transcriptome level, including established and novel markers.

Figure 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 2.

Single-cell transcriptomics reveal novel molecular markers specific to glomerular cell types. (A and B) Distribution and relative expression of individual highly variable genes (violin plots) in endothelium, mesangium, and podocytes. (A) Established markers (bold) and markers identified as relevant to the cell type in the literature (italics). (B) New marker genes identified in this study. (Left panel) Distribution and relative expression (violin plots). (Right panel) Immunohistochemistry images from the Human Protein Atlas (HPA) confirm that marker proteins are expressed in human glomeruli in a histologic pattern as predicted from single-cell transcriptional analysis in mouse glomeruli. Image areas shown (500×500 pixels =200 μm2) correspond to glomeruli taken from larger HPA images.

Thus far, glomerular gene expression has been examined almost exclusively in cell populations rather than single cells. Therefore, it has remained unclear whether cell type heterogeneity exists within the three glomerular cell types. To approach this longstanding question, we focused on subclustering the two larger clusters containing most cells—podocytes and endothelial cells. The latter showed five distinct subclusters (Figure 3A, Supplemental Table 3). Subcluster 4 was identified as residual cell doublets due to expression of high levels of podocyte-specific markers (Figure 3B), and it was excluded from further analyses. The remaining four subclusters showed equal representation from all replicates (Supplemental Figure 3, A and B). Expression of key genes distinguished these subclusters as illustrated in Figure 3, B and C and Supplemental Figure 3C. Interestingly, subcluster 3 was defined by marker genes implicated in key endothelial molecular responses to physiologic and pathologic cues, such as endothelium to pericyte crosstalk (Jag1),17–19 regulation of angiogenesis (Fbln5),20 endothelial activation (Cxcl1),21 and response to complement activation (Cldn5).22 Ehd3, a marker suggested to be specific to glomerular endothelium,23,24 was unevenly expressed, with enrichment in subclusters 0 and 2 and lower expression in subclusters 1 and 3; this raised the possibility that a fraction of Ehd3-negative cells in the endothelial pool originates from other parts of the kidney. To obtain better functional understanding of the endothelial subclusters, we performed pathway and gene set overdispersion analysis.25 Four gene sets were identified that characterized the subclusters to varying extent with terms relating to “cell adhesion,” “cell maturation,” “stress response,” and “cell proliferation” (Figure 3D, Supplemental Figure 3E, Supplemental Table 4), suggesting that the endothelial subclusters might represent different states of endothelial cell biology between homeostasis and activation. Interestingly, antibody staining in the Human Protein Atlas for some proteins encoded by the subcluster determining genes, such as Fbln2, Hspa1b, S100a4, and Thbd (Figure 3B), was consistent with a nonuniform expression pattern of these genes in human glomerular endothelial cells (Supplemental Figure 3D). Whether this state depends on individual cell localization within a healthy capillary tuft or simply reflects localization in other parts of the kidney requires further investigation.

Figure 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 3.

Subclustering reveals the presence of endothelial subpopulations. (A) Two-dimensional representation of a subclustering analysis of endothelial cells. Five subclusters (0–4) became apparent. (B) Distribution and relative expression of individual highly variable genes (violin plots) in the different clusters. Cluster 4 corresponds to residual cell doublets as indicated by the expression of podocyte-specific markers (Nphs2 and Cdkn1c). Doublets were excluded from further analysis. (C) Expression of markers colored on the basis of normalized expression levels. Upper panels correspond to the subcluster tSNE (t-Distributed Stochastic Neighbor Embedding) plot as shown in A, and lower panels correspond to the tSNE plot of the whole dataset as shown in Figure 1B. (D) Pathway and gene set overdispersion analysis.33 The heat map indicates four endothelial subclusters (0, red; 1, green; 2, blue; 3, violet) that show distinct, over-represented gene activation patterns (Supplemental Figure 3E). Corresponding gene clusters are listed in Supplemental Table 4.

Subcluster analysis in podocytes yielded seven subpopulations defined by more subtle gene expression differences (Supplemental Figure 4A, upper panel). In this context, cluster 4 showed an extensive stress response gene expression signature (Supplemental Figure 4A, lower panel). Tissue dissociation–induced changes in gene expression can explain this observation.26 Accordingly, we detected an increased expression of stress response genes in bulk mRNAseq libraries obtained from dissociated glomerular cells compared with whole glomeruli (Supplemental Figure 4, B and C). Reclustering of the podocytes after regressing out stress response genes identified six subclusters (Figure 4A, Supplemental Table 3) with equal representation of all biologic replicates (Supplemental Figure 5, A and B). Three small subclusters (3–5) were identified robustly and independent of the stress response signature (Figure 4A). Marker gene analysis identified only a handful of genes, including Cald1 and Lars2, as well as transcripts coding for mouse-specific microRNAs (Gm10801 and Gm10800) and noncoding RNAs (Gm15564 and Gm23935) (Figure 4, B and C, Supplemental Figure 5C), whereas the remaining three larger clusters did not yield specific markers. Given the small number of coding transcripts among subcluster markers, pathway and gene set overdispersion analysis did not yield significant results (Supplemental Figure 6).

Figure 4.
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 4.

Subclustering reveals a limited heterogeneity of podocytes. (A) Two-dimensional representation of a subclustering analysis of podocytes (tSNE: t-Distributed Stochastic Neighbor Embedding) after correction for tissue dissociation–induced stress response gene expression (Supplemental Material). Six podocyte subclusters (0–5) became apparent. (B) Distribution and relative expression of individual highly variable genes (violin plots) in subcluster 4. (C) Expression of markers in subcluster 4 (corresponding to B). Expression colored is on the basis of normalized expression levels (gray, low; red, high). (D) Laser-scanning confocal microscopy of isolated glomeruli from kidneys of transgenic Nphs2-Cre×mT/mG double-fluorescent reporter mice.35 Podocytes are genetically marked by Cre-dependent membrane-targeted green fluorescent protein [GFP] (green) fluorescence, whereas nonpodocyte cell types remain membrane-targeted Tomato (red) positive. (Row 1) Whole glomeruli; yellow squares in podocyte staining (green) indicate areas for magnifications as shown below. Cald1 antibody staining (upper square) and IgG control (lower square). (Rows 2 and 3) Insets from whole glomeruli as indicated. Yellow arrowheads point to GFP-positive podocytes that are Cald1 negative (row 2) or unstained by IgG control (row 3). (Rows 4 and 5) Yellow arrowheads point to a GFP-positive, Cald1-positive podocyte. Magnified areas are 22×22 μm2. Scale bars: 10 μm.

To corroborate podocyte subcluster markers on the protein level, immunofluorescence staining was carried out for Cald1 and Lars2 on glomeruli obtained from reporter mice, in which podocytes are marked by green fluorescent protein.10 Colocalization of Cald1 and Lars2 with green fluorescent protein occurred only in a subset of podocytes (Figure 4D, Supplemental Figure 5D), suggesting that heterogeneity among podocytes in healthy glomeruli might exist. Cald1 is a calmodulin and actin binding protein that has been shown to be glucocorticoid responsive in podocytes,27 and it is hypothesized to play a role in the development of diabetic nephropathy.28,29 Lars2—a mitochondrial Leucyl transfer RNA synthetase—is mutated in Perrault syndrome.30 Although Perrault syndrome is primarily a neurologic disorder, mutations of mitochondrial Leu-transfer RNA are the basis of both Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS) syndrome and hereditary FSGS,31,32 again pointing toward a role in podocytes.

Discussion

Our study also highlights a number of important caveats. First, we observed an effect of the single-cell dissociation procedure. A comparison of our single-cell data with bulk transcriptomes revealed an apparent over-representation of podocytes relative to endothelial and mesangial cells as well as a stress response signature in one of the podocyte subclusters. As shown above, the latter kind of artifact can be corrected computationally. Second, although the vast majority of cells sequenced were clearly glomerular, arguing for high purity of isolated glomeruli, an extraglomerular origin for a fraction of endothelial cells is possible. Third, we examined male mice of one strain at an age when glomeruli are still enlarging. Thus, the glomerular subpopulations observed may not necessarily be stable in mice of different ages, sexes, or strains.

In summary, our study comprehensively characterizes gene expression in individual glomerular cells. We identified novel marker genes for all glomerular cell types and found evidence for transcriptional heterogeneity among endothelial cells and podocytes. Earlier publications using single-cell RNA transcriptomics on glomerular cells were limited by focusing exclusively on a single cell type and sequencing small numbers of cells (20 podocytes and 14 mesangial cells, respectively).33,34 In contrast, our approach has exploited the potential of highly parallel single-cell profiling for profiling a large number of cells in an unbiased way.33,34 As a resource, we provide an extensive single-cell sequencing dataset of the mouse glomerular transcriptome that can be freely accessed and interrogated online (https://shiny.mdc-berlin.de/mgsca/). Our study thus paves the way for future investigations addressing the response of individual glomerular cells to disease states—as illustrated by a pilot study on kidney biopsy specimens from patients with lupus nephritis.35 The glomerulus is a key system, the understanding of which will greatly benefit from improved single-cell RNA sequencing protocols.

Disclosures

None.

Acknowledgments

We thank Martyna Brütting for excellent technical support with immunofluorescence staining and immunohistochemistry. Christian Jüngst (Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases Imaging Core Facility) provided excellent support regarding confocal microscopy, and Gunter Rappl (CMMC Fluorescence-activated cell sorting Facility) helped with cell sorting.

This work was supported by German Research Foundation grants RA838/5-1 (to N.R.), KA3217/4-1 (to M.K.), KFO329 (to M.K. and R.-U.M.), and MU3629/2-1 (to R.-U.M.); Berlin Institute of Health grant CRG2aTP7 (to N.R.); Deutsches Zentrum fuer Herz-Kreislaufforschung e.V. grant BER1.2VD (to N.R.); the Helmholtz Association through Helmholtz Excellence Network for NeuroCure grant HFG ExNet-0036-phase2-3 (to N.R.); and the Nachwuchsgruppen Nordrhein-Westfalen Program of the Ministery of Science North Rhine Westfalia (R.-U.M.). M. Rahmatollahi was supported by the Graduate Program in Pharmacology and Experimental Therapeutics at the University of Cologne, which is financially and scientifically supported by Bayer.

T.B., B.S., and N.R. conceived the study; N.R., M.K., and R.-U.M. procured funding; N.K., M.Ra., C.K., M.K., and R.-U.M. designed the study; N.R. supervised, N.K. performed all computational analyses and designed the online database, and H.L. performed PAGODA; M.Ra. carried out mouse experiments and microscopy; M.H. analyzed imaging data; C.K. supervised, A.B. performed single-cell and bulk mRNA sequencing; N.K., M.Ra., M.H., M.Ri., C.K., M.K., and R.-U.M. analyzed and discussed data; N.K., C.K., M.H., and M.K. prepared the figures; N.K., C.K., M.K., and R.-U.M. wrote the manuscript; all authors approved the final version.

Footnotes

  • N.K., M. Rahmatollahi, M.K., and R.-U.M. contributed equally to this work.

  • Published online ahead of print. Publication date available at www.jasn.org.

  • See related perspective, “Single-Cell Sequencing the Glomerulus, Unraveling the Molecular Programs of Glomerular Filtration, One Cell at a Time,” on pages 2036–2038.

  • This article contains supplemental material online at http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2018030238/-/DCSupplemental.

  • Copyright © 2018 by the American Society of Nephrology

References

  1. ↵
    1. Brinkkoetter PT,
    2. Ising C,
    3. Benzing T
    : The role of the podocyte in albumin filtration. Nat Rev Nephrol 9: 328–336, 2013pmid:23609563
    OpenUrlCrossRefPubMed
  2. ↵
    1. Scott RP,
    2. Quaggin SE
    : Review series: The cell biology of renal filtration. J Cell Biol 209: 199–210, 2015pmid:25918223
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Neal CR,
    2. Muston PR,
    3. Njegovan D,
    4. Verrill R,
    5. Harper SJ,
    6. Deen WM, et al
    .: Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions. Am J Physiol Renal Physiol 293: F1787–F1798, 2007pmid:17715264
    OpenUrlCrossRefPubMed
  4. ↵
    1. Macosko EZ,
    2. Basu A,
    3. Satija R,
    4. Nemesh J,
    5. Shekhar K,
    6. Goldman M, et al
    .: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161: 1202–1214, 2015pmid:26000488
    OpenUrlCrossRefPubMed
  5. ↵
    1. Satija R,
    2. Farrell JA,
    3. Gennert D,
    4. Schier AF,
    5. Regev A
    : Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33: 495–502, 2015pmid:25867923
    OpenUrlCrossRefPubMed
  6. ↵
    1. Chen L,
    2. Lee JW,
    3. Chou C-L,
    4. Nair AV,
    5. Battistone MA,
    6. Păunescu TG, et al
    .: Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proc Natl Acad Sci U S A 114: E9989–E9998, 2017pmid:29089413
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Kann M,
    2. Ettou S,
    3. Jung YL,
    4. Lenz MO,
    5. Taglienti ME,
    6. Park PJ, et al
    .: Genome-wide analysis of wilms’ tumor 1-controlled gene expression in podocytes reveals key regulatory mechanisms. J Am Soc Nephrol 26: 2097–2104, 2015pmid:25636411
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Alles J,
    2. Karaiskos N,
    3. Praktiknjo SD,
    4. Grosswendt S,
    5. Wahle P,
    6. Ruffault P-L, et al
    .: Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol 15: 44, 2017pmid:28526029
    OpenUrlCrossRefPubMed
  9. ↵
    1. Uhlén M,
    2. Fagerberg L,
    3. Hallström BM,
    4. Lindskog C,
    5. Oksvold P,
    6. Mardinoglu A, et al
    .: Proteomics. Tissue-based map of the human proteome. Science 347: 1260419, 2015pmid:25613900
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Muzumdar MD,
    2. Tasic B,
    3. Miyamichi K,
    4. Li L,
    5. Luo L
    : A global double-fluorescent Cre reporter mouse. Genesis 45: 593–605, 2007pmid:17868096
    OpenUrlCrossRefPubMed
  11. ↵
    1. Takemoto M,
    2. Asker N,
    3. Gerhardt H,
    4. Lundkvist A,
    5. Johansson BR,
    6. Saito Y, et al
    .: A new method for large scale isolation of kidney glomeruli from mice. Am J Pathol 161: 799–805, 2002pmid:12213707
    OpenUrlCrossRefPubMed
  12. ↵
    1. Karaiskos N,
    2. Wahle P,
    3. Alles J,
    4. Boltengagen A,
    5. Ayoub S,
    6. Kipar C, et al
    .: The Drosophila embryo at single-cell transcriptome resolution. Science 358: 194–199, 2017pmid:28860209
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Brunskill EW,
    2. Park J-S,
    3. Chung E,
    4. Chen F,
    5. Magella B,
    6. Potter SS
    : Single cell dissection of early kidney development: Multilineage priming. Development 141: 3093–3101, 2014pmid:25053437
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Boerries M,
    2. Grahammer F,
    3. Eiselein S,
    4. Buck M,
    5. Meyer C,
    6. Goedel M, et al
    .: Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks. Kidney Int 83: 1052–1064, 2013pmid:23364521
    OpenUrlCrossRefPubMed
  15. ↵
    1. Potter SS,
    2. Brunskill EW
    : Building an atlas of gene expression driving kidney development: Pushing the limits of resolution. Pediatr Nephrol 29: 581–588, 2014pmid:23996451
    OpenUrlPubMed
  16. ↵
    1. Horrillo A,
    2. Porras G,
    3. Ayuso MS,
    4. González-Manchón C
    : Loss of endothelial barrier integrity in mice with conditional ablation of podocalyxin (Podxl) in endothelial cells. Eur J Cell Biol 95: 265–276, 2016pmid:27289182
    OpenUrlPubMed
  17. ↵
    1. Cao Z,
    2. Lis R,
    3. Ginsberg M,
    4. Chavez D,
    5. Shido K,
    6. Rabbany SY, et al
    .: Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med 22: 154–162, 2016pmid:26779814
    OpenUrlCrossRefPubMed
    1. Liu H,
    2. Kennard S,
    3. Lilly B
    : NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res 104: 466–475, 2009pmid:19150886
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Scheppke L,
    2. Murphy EA,
    3. Zarpellon A,
    4. Hofmann JJ,
    5. Merkulova A,
    6. Shields DJ, et al
    .: Notch promotes vascular maturation by inducing integrin-mediated smooth muscle cell adhesion to the endothelial basement membrane. Blood 119: 2149–2158, 2012pmid:22134168
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Chan W,
    2. Ismail H,
    3. Mayaki D,
    4. Sanchez V,
    5. Tiedemann K,
    6. Davis EC, et al
    .: Fibulin-5 regulates Angiopoietin-1/Tie-2 receptor signaling in endothelial cells. PLoS One 11: e0156994, 2016pmid:27304216
    OpenUrlCrossRefPubMed
  20. ↵
    1. Mai J,
    2. Nanayakkara G,
    3. Lopez-Pastrana J,
    4. Li X,
    5. Li Y-F,
    6. Wang X, et al
    .: Interleukin-17A promotes aortic endothelial cell activation via transcriptionally and post-translationally activating p38 Mitogen-activated Protein Kinase (MAPK) pathway. J Biol Chem 291: 4939–4954, 2016pmid:26733204
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Dalmasso AP,
    2. Goldish D,
    3. Benson BA,
    4. Tsai AK,
    5. Wasiluk KR,
    6. Vercellotti GM
    : Interleukin-4 induces up-regulation of endothelial cell claudin-5 through activation of FoxO1: Role in protection from complement-mediated injury. J Biol Chem 289: 838–847, 2014pmid:24280217
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. George M,
    2. Rainey MA,
    3. Naramura M,
    4. Foster KW,
    5. Holzapfel MS,
    6. Willoughby LL, et al
    .: Renal thrombotic microangiopathy in mice with combined deletion of endocytic recycling regulators EHD3 and EHD4. PLoS One 6: e17838, 2011pmid:21408024
    OpenUrlCrossRefPubMed
  23. ↵
    1. Patrakka J,
    2. Xiao Z,
    3. Nukui M,
    4. Takemoto M,
    5. He L,
    6. Oddsson A, et al
    .: Expression and subcellular distribution of novel glomerulus-associated proteins dendrin, ehd3, sh2d4a, plekhh2, and 2310066E14Rik. J Am Soc Nephrol 18: 689–697, 2007pmid:17251388
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Fan J,
    2. Salathia N,
    3. Liu R,
    4. Kaeser GE,
    5. Yung YC,
    6. Herman JL, et al
    .: Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods 13: 241–244, 2016pmid:26780092
    OpenUrlCrossRefPubMed
  25. ↵
    1. van den Brink SC,
    2. Sage F,
    3. Vértesy Á,
    4. Spanjaard B,
    5. Peterson-Maduro J,
    6. Baron CS, et al
    .: Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 14: 935–936, 2017pmid:28960196
    OpenUrlCrossRefPubMed
  26. ↵
    1. Jiang L,
    2. Hindmarch CCT,
    3. Rogers M,
    4. Campbell C,
    5. Waterfall C,
    6. Coghill J, et al
    .: RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways. Sci Rep 6: 35671, 2016pmid:27774996
    OpenUrlPubMed
  27. ↵
    1. Wang Z,
    2. Wang Z,
    3. Zhou Z,
    4. Ren Y
    : Crucial genes associated with diabetic nephropathy explored by microarray analysis. BMC Nephrol 17: 128, 2016pmid:27613243
    OpenUrlPubMed
  28. ↵
    1. Śnit M,
    2. Nabrdalik K,
    3. Długaszek M,
    4. Gumprecht J,
    5. Trautsolt W,
    6. Górczyńska-Kosiorz S, et al
    .: Association of rs 3807337 polymorphism of CALD1 gene with diabetic nephropathy occurrence in type 1 diabetes - preliminary results of a family-based study. Endokrynol Pol 68: 13–17, 2017pmid:28255976
    OpenUrlPubMed
  29. ↵
    1. Pierce SB,
    2. Gersak K,
    3. Michaelson-Cohen R,
    4. Walsh T,
    5. Lee MK,
    6. Malach D, et al
    .: Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am J Hum Genet 92: 614–620, 2013pmid:23541342
    OpenUrlCrossRefPubMed
  30. ↵
    1. Cheong HI,
    2. Chae JH,
    3. Kim JS,
    4. Park HW,
    5. Ha IS,
    6. Hwang YS, et al
    .: Hereditary glomerulopathy associated with a mitochondrial tRNA(Leu) gene mutation. Pediatr Nephrol 13: 477–480, 1999pmid:10452273
    OpenUrlCrossRefPubMed
  31. ↵
    1. Jansen JJ,
    2. Maassen JA,
    3. van der Woude FJ,
    4. Lemmink HA,
    5. van den Ouweland JM,
    6. t' Hart LM, et al
    .: Mutation in mitochondrial tRNA(Leu(UUR)) gene associated with progressive kidney disease. J Am Soc Nephrol 8: 1118–1124, 1997pmid:9219161
    OpenUrlAbstract
  32. ↵
    1. Lu Y,
    2. Ye Y,
    3. Bao W,
    4. Yang Q,
    5. Wang J,
    6. Liu Z, et al
    .: Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing. Kidney Int 92: 1119–1129, 2017pmid:28709640
    OpenUrlCrossRefPubMed
  33. ↵
    1. Lu Y,
    2. Ye Y,
    3. Yang Q,
    4. Shi S
    : Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes. Kidney Int 92: 504–513, 2017pmid:28320530
    OpenUrlCrossRefPubMed
  34. ↵
    1. Der E,
    2. Ranabothu S,
    3. Suryawanshi H,
    4. Akat KM,
    5. Clancy R,
    6. Morozov P, et al
    .: Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2: 2, 2017pmid:28469080
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Journal of the American Society of Nephrology: 29 (8)
Journal of the American Society of Nephrology
Vol. 29, Issue 8
August 2018
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
View Selected Citations (0)
Print
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in JASN.
Enter multiple addresses on separate lines or separate them with commas.
A Single-Cell Transcriptome Atlas of the Mouse Glomerulus
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A Single-Cell Transcriptome Atlas of the Mouse Glomerulus
Nikos Karaiskos, Mahdieh Rahmatollahi, Anastasiya Boltengagen, Haiyue Liu, Martin Hoehne, Markus Rinschen, Bernhard Schermer, Thomas Benzing, Nikolaus Rajewsky, Christine Kocks, Martin Kann, Roman-Ulrich Müller
JASN Aug 2018, 29 (8) 2060-2068; DOI: 10.1681/ASN.2018030238

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A Single-Cell Transcriptome Atlas of the Mouse Glomerulus
Nikos Karaiskos, Mahdieh Rahmatollahi, Anastasiya Boltengagen, Haiyue Liu, Martin Hoehne, Markus Rinschen, Bernhard Schermer, Thomas Benzing, Nikolaus Rajewsky, Christine Kocks, Martin Kann, Roman-Ulrich Müller
JASN Aug 2018, 29 (8) 2060-2068; DOI: 10.1681/ASN.2018030238
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Disclosures
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Data Supps
  • Info & Metrics
  • View PDF

More in this TOC Section

  • Arginase-1 Is Required for Macrophage-Mediated Renal Tubule Regeneration
  • Comparative Effectiveness of mRNA-based BNT162b2 Vaccine versus Adenovirus Vector–Based Ad26.COV2.S Vaccine for the Prevention of COVID-19 among Dialysis Patients
  • The Impact of Vaccination on Incidence and Outcomes of SARS-CoV-2 Infection in Patients with Kidney Failure in Scotland
Show more Rapid Communications

Cited By...

  • Single-Nucleus RNA Sequencing Identifies New Classes of Proximal Tubular Epithelial Cells in Kidney Fibrosis
  • Slit2-Robo Signaling Promotes Glomerular Vascularization and Nephron Development
  • Tripartite Separation of Glomerular Cell Types and Proteomes from Reporter-Free Mice
  • Current Methodological Challenges of Single-Cell and Single-Nucleus RNA-Sequencing in Glomerular Diseases
  • Progressive Cellular Senescence Mediates Renal Dysfunction in Ischemic Nephropathy
  • Super-Enhancer-Associated Transcription Factors Maintain Transcriptional Regulation in Mature Podocytes
  • Systemic gene therapy with thymosin {beta}4 alleviates glomerular injury in mice
  • Targeted Single-Cell RNA-seq Identifies Minority Cell Types of Kidney Distal Nephron
  • Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome
  • DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species
  • Recessive NOS1AP variants impair actin remodeling and cause glomerulopathy in humans and mice
  • Loss of filtration function in diabetic glomeruli is associated with ultrastructural changes in glomerular endothelial cell fenestrations
  • Only Hyperuricemia with Crystalluria, but not Asymptomatic Hyperuricemia, Drives Progression of Chronic Kidney Disease
  • Spatially resolved transcriptome profiles of mammalian kidneys illustrate the molecular complexity of functional nephron segments, cell-to-cell interactions and genetic variants
  • Integration of GWAS Summary Statistics and Gene Expression Reveals Target Cell Types Underlying Kidney Function Traits
  • Single-Cell Transcriptome Profiling of the Kidney Glomerulus Identifies Key Cell Types and Reactions to Injury
  • Single-cell mapper (scMappR): using scRNA-seq to infer cell-type specificities of differentially expressed genes
  • Tripartite separation of glomerular cell-types and proteomes from reporter-free mice
  • Understanding angiodiversity: insights from single cell biology
  • Single cell transcriptomics reveal disrupted kidney filter cell-cell interactions after early and selective podocyte injury
  • Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury
  • Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron that regulate blood pressure and calcium balance
  • A reference-guided approach for epigenetic characterization of single cells
  • Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney
  • Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury
  • Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows
  • Single-Cell RNA Sequencing Reveals Renal Endothelium Heterogeneity and Metabolic Adaptation to Water Deprivation
  • The in vivo endothelial cell translatome is highly heterogeneous across vascular beds
  • Renal-Tubule Epithelial Cell Nomenclature for Single-Cell RNA-Sequencing Studies
  • Cell-Type Selective Markers Represented in Whole-Kidney RNA-Seq Data
  • Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease
  • Manipulation of Nephron-Patterning Signals Enables Selective Induction of Podocytes from Human Pluripotent Stem Cells
  • Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis
  • Google Scholar

Similar Articles

Related Articles

  • Single-Cell Sequencing the Glomerulus, Unraveling the Molecular Programs of Glomerular Filtration, One Cell at a Time
  • PubMed
  • Google Scholar

Keywords

  • glomerulus
  • single-cell RNA sequencing
  • scRNAseq
  • podocyte
  • transcriptome

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Annual Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • Editorial Fellowship Program
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • JASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About JASN
  • JASN Email Alerts
  • JASN Key Impact Information
  • JASN Podcasts
  • JASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Password/Email Address Changes
  • Subscribe to ASN Journals

© 2022 American Society of Nephrology

Print ISSN - 1046-6673 Online ISSN - 1533-3450

Powered by HighWire