Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Article Collections
    • JASN Podcasts
    • Archives
    • Saved Searches
    • ASN Meeting Abstracts
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Subscriptions
  • More
    • About JASN
    • Alerts
    • Advertising
    • Editorial Fellowship Team
    • Feedback
    • Reprints
    • Impact Factor
    • Editorial Fellowship Application Process
  • ASN Kidney News
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Article Collections
    • JASN Podcasts
    • Archives
    • Saved Searches
    • ASN Meeting Abstracts
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Subscriptions
  • More
    • About JASN
    • Alerts
    • Advertising
    • Editorial Fellowship Team
    • Feedback
    • Reprints
    • Impact Factor
    • Editorial Fellowship Application Process
  • ASN Kidney News
  • Follow JASN on Twitter
  • Visit ASN on Facebook
  • Follow JASN on RSS
  • Community Forum
Basic Research
You have accessRestricted Access

Quantitative Proteomics of All 14 Renal Tubule Segments in Rat

Kavee Limbutara, Chung-Lin Chou and Mark A. Knepper
JASN June 2020, 31 (6) 1255-1266; DOI: https://doi.org/10.1681/ASN.2020010071
Kavee Limbutara
Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chung-Lin Chou
Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark A. Knepper
Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mark A. Knepper
  • Article
  • Figures & Data Supps
  • Info & Metrics
  • View PDF
Loading

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Significance Statement

The renal tubule’s 14 distinct segments consist of epithelial cells with different transport and metabolic functions. Identifying the proteins mediating each function is crucial to gaining an overall understanding of kidney physiology and pathophysiology. New developments in protein mass spectrometry have resulted in a marked increase in sensitivity of protein detection and quantification. In this study, the authors manually microdissected kidney tubules from rat kidneys and leveraged the advances in protein mass spectrometry to identify and quantify the proteins expressed in each of the 14 tubule segments. They used these data to create an online information resource, the Kidney Tubule Expression Atlas, to allow researchers throughout the world to browse segment-specific protein expression data and download them for their own investigations.

Abstract

Background Previous research has used RNA sequencing in microdissected kidney tubules or single cells isolated from the kidney to profile gene expression in each type of kidney tubule epithelial cell. However, because proteins, not mRNA molecules, mediate most cellular functions, it is desirable to know the identity and amounts of each protein species to understand function. Recent improvements in the sensitivity of mass spectrometers offered us the ability to quantify the proteins expressed in each of 14 different renal tubule segments from rat.

Methods We manually dissected kidney tubules from rat kidneys and subjected samples to protein mass spectrometry. We used the “proteomic ruler” technique to estimate the number of molecules of each protein per cell.

Results Over the 44 samples analyzed, the average number of quantified proteins per segment was 4234, accounting for at least 99% of protein molecules in each cell. We have made the data publicly available online at the Kidney Tubule Expression Atlas website (https://esbl.nhlbi.nih.gov/KTEA/). Protein abundance along the renal tubule for many commonly studied water and solute transport proteins and metabolic enzymes matched expectations from prior localization studies, demonstrating the overall reliability of the data. The site features a “correlated protein” function, which we used to identify cell type–specific transcription factors expressed along the renal tubule.

Conclusions We identified and quantified proteins expressed in each of the 14 segments of rat kidney tubules and used the proteomic data that we obtained to create an online information resource, the Kidney Tubule Expression Atlas. This resource will allow users throughout the world to browse segment-specific protein expression data and download them for their own research.

  • kidney tubule
  • Mass spectrometry
  • Database
  • Systems Biology
  • Copyright © 2020 by the American Society of Nephrology
View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.

Purchase access

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$32.00

You will have access to the article for 24 hours.  

If you do not have an account, you will need to create one and you will be asked for your name, email address and other information.  Just like commercial web sites, we do need details from you in order to complete your purchase of an article.  Select the "Create an Account" link to create your account. 

You will then be asked to register a user name, email address and you will need to create a password that is at least eight characters in length. As you move through the registration page, you will have to verify you are a person by completing a Captcha request.   Lastly, your first and last name will be required. 

Once your information is successfully saved, the system will redisplay the home page of the journal.  From there, navigate back to the article to purchase.  Select the article and at the bottom of the page, use the credentials you just created to login. The article will be added to your shopping cart.  You can continue to navigate across JASN and CJASN adding to your cart from both journals. When you are ready to complete your purchse, select the Shopping Cart from the upper right hand corner of the page and follow the onscreen instructions. 

PreviousNext
Back to top

In this issue

Journal of the American Society of Nephrology: 31 (6)
Journal of the American Society of Nephrology
Vol. 31, Issue 6
June 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
View Selected Citations (0)
Print
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in JASN.
Enter multiple addresses on separate lines or separate them with commas.
Quantitative Proteomics of All 14 Renal Tubule Segments in Rat
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Quantitative Proteomics of All 14 Renal Tubule Segments in Rat
Kavee Limbutara, Chung-Lin Chou, Mark A. Knepper
JASN Jun 2020, 31 (6) 1255-1266; DOI: 10.1681/ASN.2020010071

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Quantitative Proteomics of All 14 Renal Tubule Segments in Rat
Kavee Limbutara, Chung-Lin Chou, Mark A. Knepper
JASN Jun 2020, 31 (6) 1255-1266; DOI: 10.1681/ASN.2020010071
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Disclosures
    • Funding
    • Acknowledgments
    • Supplemental Material
    • Footnotes
    • References
  • Figures & Data Supps
  • Info & Metrics
  • View PDF

More in this TOC Section

  • SRGAP1 Controls Small Rho GTPases To Regulate Podocyte Foot Process Maintenance
  • Urinary Single-Cell Profiling Captures the Cellular Diversity of the Kidney
  • Impairment of Proteasome Function in Podocytes Leads to CKD
Show more Basic Research

Cited By...

  • Does SARS-CoV-2 Infect the Kidney?
  • Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron that regulate blood pressure and calcium balance
  • Google Scholar

Similar Articles

Related Articles

  • PubMed
  • Google Scholar

Keywords

  • kidney tubule
  • mass spectrometry
  • Database
  • systems biology

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Annual Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • Editorial Fellowship Program
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • JASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About JASN
  • JASN Email Alerts
  • JASN Key Impact Information
  • JASN Podcasts
  • JASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Password/Email Address Changes
  • Subscribe

© 2021 American Society of Nephrology

Print ISSN - 1046-6673 Online ISSN - 1533-3450

Powered by HighWire