Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • JASN Podcasts
    • Article Collections
    • Archives
    • ASN Meeting Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Editorial Fellowship
    • Editorial Fellowship Team
    • Editorial Fellowship Application Process
  • More
    • About JASN
    • Advertising
    • Alerts
    • Feedback
    • Impact Factor
    • Reprints
    • Subscriptions
  • ASN Kidney News
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • JASN Podcasts
    • Article Collections
    • Archives
    • ASN Meeting Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Editorial Fellowship
    • Editorial Fellowship Team
    • Editorial Fellowship Application Process
  • More
    • About JASN
    • Advertising
    • Alerts
    • Feedback
    • Impact Factor
    • Reprints
    • Subscriptions
  • ASN Kidney News
  • Follow JASN on Twitter
  • Visit ASN on Facebook
  • Follow JASN on RSS
  • Community Forum
You have accessRestricted Access

Intracellular acidification mediates the inhibitory effect of peritoneal dialysate on peritoneal macrophages.

A Douvdevani, J Rapoport, A Konforty, R Yulzari, A Moran and C Chaimovitz
JASN August 1995, 6 (2) 207-213;
A Douvdevani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Rapoport
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Konforty
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R Yulzari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Moran
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C Chaimovitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • View PDF
Loading

Abstract

Commercial peritoneal dialysis solution (CDS) is known to have a detrimental effect on the capacity of peritoneal macrophages (PM phi) to kill bacteria and produce acute phase cytokines. This cytotoxic effect is largely caused by the low pH of CDS. Because the cytoplasmic pH (pHi) is an important determinant of cellular function, the effect of CDS on the pHi of PM phi from continuous ambulatory peritoneal dialysis patients was studied. The pHi of PM phi was measured fluorometrically in N-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered salt solution (HBSS) or CDS at pH values of 5.3, 6.5, and 7.0, values that represent the pH existing in dialysate during the first 30 min of dwell time. For any given pH of the experimental medium, the pHi was always more acidic in CDS than in HBSS. When PM phi were incubated with a lactate-containing HBSS, a cellular acidification was observed that was similar to that attained by exposure to CDS at the same pH. This supports the hypothesis that the decrease in pHi was due to the influx of lactic acid from the CDS into the PM phi. In order to demonstrate a causal association between the CDS-induced cellular acidification and a defect in phagocytosis and cytokine production, these functions were studied after pHi clamping by means of K+/nigericin. It was found that clamping pHi to values below 6.5 led to a markedly reduced tumor necrosis factor-alpha production and phagocytosis. However, at values of pHi > 6.5, these functions were normal. (ABSTRACT TRUNCATED AT 250 WORDS)

PreviousNext
Back to top

In this issue

Journal of the American Society of Nephrology
Vol. 6, Issue 2
1 Aug 1995
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
View Selected Citations (0)
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in JASN.
Enter multiple addresses on separate lines or separate them with commas.
Intracellular acidification mediates the inhibitory effect of peritoneal dialysate on peritoneal macrophages.
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Intracellular acidification mediates the inhibitory effect of peritoneal dialysate on peritoneal macrophages.
A Douvdevani, J Rapoport, A Konforty, R Yulzari, A Moran, C Chaimovitz
JASN Aug 1995, 6 (2) 207-213;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Intracellular acidification mediates the inhibitory effect of peritoneal dialysate on peritoneal macrophages.
A Douvdevani, J Rapoport, A Konforty, R Yulzari, A Moran, C Chaimovitz
JASN Aug 1995, 6 (2) 207-213;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • View PDF

Cited By...

  • No citing articles found.
  • Google Scholar

Similar Articles

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Annual Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • Editorial Fellowship Program
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • JASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About JASN
  • JASN Email Alerts
  • JASN Key Impact Information
  • JASN Podcasts
  • JASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Password/Email Address Changes
  • Subscribe to ASN Journals

© 2021 American Society of Nephrology

Print ISSN - 1046-6673 Online ISSN - 1533-3450

Powered by HighWire