Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Subject Collections
    • JASN Podcasts
    • Archives
    • Saved Searches
    • ASN Meeting Abstracts
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Subscriptions
  • More
    • About JASN
    • Alerts
    • Advertising
    • Editorial Fellowship Program
    • Feedback
    • Reprints
    • Impact Factor
  • ASN Kidney News
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • Log out
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • Subject Collections
    • JASN Podcasts
    • Archives
    • Saved Searches
    • ASN Meeting Abstracts
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Subscriptions
  • More
    • About JASN
    • Alerts
    • Advertising
    • Editorial Fellowship Program
    • Feedback
    • Reprints
    • Impact Factor
  • ASN Kidney News
  • Follow JASN on Twitter
  • Visit ASN on Facebook
  • Follow JASN on RSS
  • Community Forum
You have accessRestricted Access

Glycosylation is not essential for vasopressin-dependent routing of aquaporin-2 in transfected Madin-Darby canine kidney cells.

R Baumgarten, M H Van De Pol, J F Wetzels, C H Van Os and P M Deen
JASN September 1998, 9 (9) 1553-1559;
R Baumgarten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M H Van De Pol
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J F Wetzels
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C H Van Os
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P M Deen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • View PDF
Loading

Abstract

Glycosylation has been shown to be important for proper routing and membrane insertion of a number of proteins. In the collecting duct, aquaporin-2 (AQP2) is inserted into the apical membrane after stimulation of vasopressin type-2 receptors and retrieved into an endosomal compartment after withdrawal of vasopressin. The extent of glycosylation of AQP2 in human kidney and urine and the effects of deglycoylation on routing of AQP2 in an AQP2-transfected Madin-Darby canine kidney cell line (clone WT10) were investigated. Semiquantitative immunoblotting of human kidney membranes and urine showed an AQP2 glycosylation of 35 to 45% for medulla, papilla, and urine, with low variation among individuals. The 1-desamino-8-D-arginine vasopressin-induced transcellular osmotic water permeability (Pf) of WT10 cells by a factor of 2.6 +/- 0.2 was reduced to 1.5 +/- 0.1 after pretreatment with the glycosylation inhibitor tunicamycin. However, when WT10 cells were incubated with 8-br-cAMP, the Pf increased by a factor 2.8 +/- 0.2 and by 2.9 +/- 0.2 after prior incubation with tunicamycin. Immunoblot analyses revealed that in WT10 cells, 34% of AQP2 is glycosylated, which was reduced to 2% after tunicamycin treatment. Surface biotinylation and subsequent semiquantitative immunoblotting revealed that stimulation by cAMP increased the level of AQP2 in the apical membrane of WT10 cells 1.5-fold. independent of the presence of tunicamycin. However, in tunicamycin-treated WT10 cells, all AQP2 in the apical membrane was unglycosylated, whereas in untreated cells 30% of AQP2 in the apical membrane was glycosylated. These results prove that glycosylation has no function in the routing of AQP2 in Madin-Darby canine kidney cells.

PreviousNext
Back to top

In this issue

Journal of the American Society of Nephrology
Vol. 9, Issue 9
1 Sep 1998
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
  • Back Matter (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
View Selected Citations (0)
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in JASN.
Enter multiple addresses on separate lines or separate them with commas.
Glycosylation is not essential for vasopressin-dependent routing of aquaporin-2 in transfected Madin-Darby canine kidney cells.
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Glycosylation is not essential for vasopressin-dependent routing of aquaporin-2 in transfected Madin-Darby canine kidney cells.
R Baumgarten, M H Van De Pol, J F Wetzels, C H Van Os, P M Deen
JASN Sep 1998, 9 (9) 1553-1559;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Glycosylation is not essential for vasopressin-dependent routing of aquaporin-2 in transfected Madin-Darby canine kidney cells.
R Baumgarten, M H Van De Pol, J F Wetzels, C H Van Os, P M Deen
JASN Sep 1998, 9 (9) 1553-1559;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
  • Info & Metrics
  • View PDF

Cited By...

  • Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice
  • Proteome-Wide Measurement of Protein Half-Lives and Translation Rates in Vasopressin-Sensitive Collecting Duct Cells
  • Novel Regulation of Aquaporins during Osmotic Stress
  • Glycosylation Is Important for Cell Surface Expression of the Water Channel Aquaporin-2 but Is Not Essential for Tetramerization in the Endoplasmic Reticulum
  • Antigenic and Functional Properties of the Human Red Blood Cell Urea Transporter hUT-B1
  • Cell-Biologic and Functional Analyses of Five New Aquaporin-2 Missense Mutations that Cause Recessive Nephrogenic Diabetes Insipidus
  • Google Scholar

Similar Articles

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Annual Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • Editorial Fellowship Program
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • JASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About JASN
  • JASN Email Alerts
  • JASN Key Impact Information
  • JASN Podcasts
  • JASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Password/Email Address Changes
  • Subscribe

© 2021 American Society of Nephrology

Print ISSN - 1046-6673 Online ISSN - 1533-3450

Powered by HighWire