Abstract
Background: We reasoned that unraveling the dynamic changes in accessibility of genomic regulatory elements and gene expression at single-cell resolution will inform the basic mechanisms of nephrogenesis.
Methods: We performed single-cell ATAC-seq and RNA-seq both individually (Singleomes; Six2GFPcells) and jointly in the same cells (Multiomes; kidneys) to generate integrated chromatin and transcriptional maps in mouse embryonic and neonatal nephron progenitor cells (NPCs).
Results: WWe demonstrate that singleomes and multiomes are comparable in assigning most cell states, identification of new cell type markers, and defining the transcription factors driving cell identity. However, multiomes are more precise in defining the
progenitor population. Multiomes identified a "pioneer" bHLH/Fox motif signature in NPCs. Moreover, we identified a subset of Fox factors exhibiting high chromatin activity in podocytes. One of these Fox factors, Foxp1, is important for nephrogenesis. Key nephrogenic factors are distinguished by strong correlation between linked generegulatory elements and gene expression.
Conclusion: Mapping the regulatory landscape at single-cell resolution informs the regulatory hierarchy of nephrogenesis. Paired single-cell epigenomes and transcriptomes of nephron progenitors should provide a foundation to understand prenatal programming, regeneration following injury, and ex vivo nephrogenesis.
If you are:
- an ASN member, select the "ASN Member" login button.
- an individual subscriber, login with you User Name and Password.
- an Institutional user, select the Institution option where you will be presented with a list of Shibboleth federations. If you do not see your federation, contact publications@asn-online.org.
ASN MEMBER LOGIN
Log in using your username and password
Log in through your institution
Purchase access
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$34.00