Skip to main content

Main menu

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • JASN Podcasts
    • Article Collections
    • Archives
    • Kidney Week Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Editorial Fellowship
    • Editorial Fellowship Team
    • Editorial Fellowship Application Process
  • More
    • About JASN
    • Advertising
    • Alerts
    • Feedback
    • Impact Factor
    • Reprints
    • Subscriptions
  • ASN Kidney News
  • Other
    • ASN Publications
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology

User menu

  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
American Society of Nephrology
  • Other
    • ASN Publications
    • CJASN
    • Kidney360
    • Kidney News Online
    • American Society of Nephrology
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Advertisement
American Society of Nephrology

Advanced Search

  • Home
  • Content
    • Published Ahead of Print
    • Current Issue
    • JASN Podcasts
    • Article Collections
    • Archives
    • Kidney Week Abstracts
    • Saved Searches
  • Authors
    • Submit a Manuscript
    • Author Resources
  • Editorial Team
  • Editorial Fellowship
    • Editorial Fellowship Team
    • Editorial Fellowship Application Process
  • More
    • About JASN
    • Advertising
    • Alerts
    • Feedback
    • Impact Factor
    • Reprints
    • Subscriptions
  • ASN Kidney News
  • Follow JASN on Twitter
  • Visit ASN on Facebook
  • Follow JASN on RSS
  • Community Forum
Basic ResearchCell Biology
You have accessRestricted Access

Aqp2+ Progenitor Cells Maintain and Repair Distal Renal Segments

Chao Gao, Long Zhang, Enuo Chen and Wenzheng Zhang
JASN April 2022, ASN.2021081105; DOI: https://doi.org/10.1681/ASN.2021081105
Chao Gao
Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Long Zhang
Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Enuo Chen
Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wenzheng Zhang
Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data Supps
  • Info & Metrics
  • View PDF
Loading

Visual Abstract

Figure
  • Download figure
  • Open in new tab
  • Download powerpoint

Significance Statement

Whether adult mammalian kidneys harbor progenitor cells is a long debated issue. Here we provide convincing and conclusive data demonstrating that cells expressing Aqp2 and V-ATPase subunits B1 and B2, like their embryonic and neonate counterparts, function as Aqp2+ progenitor cells (APs) in the adult mouse kidney, and play a critical role in the maintenance and regeneration of the kidney under normal and pathologic conditions (unilateral ureteral obstruction). APs may be considered the first potential candidate that meet the strict definition of progenitor cells requiring in vivo demonstration of self-renewal, clonogenicity, multipotency, and participation in maintenance and repair. Adult progenitor cells could become critical for regenerative medicine and response to diseases. Identification of APs and characterization of their role in renal maintenance and regeneration after renal injury may help in vitro kidney organoid generation.

Abstract

Background Adult progenitor cells presumably demonstrate clonogenicity, self-renewal, and multipotentiality, and can regenerate cells under various conditions. Definitive evidence demonstrating the existence of such progenitor cells in adult mammalian kidneys is lacking.

Method We performed in vivo lineage tracing and thymidine analogue labeling using adult tamoxifen-inducible (Aqp2ECE/+ RFP/+, Aqp2ECE/+ Brainbow/+, and Aqp2ECE/+ Brainbow/Brainbow) and WT mice. The tamoxifen-inducible mice were analyzed between 1 and 300 days postinduction. Alternatively, WT and tamoxifen-induced mice were subjected to unilateral ureteral obstruction and thymidine analogue labeling and analyzed 2–14 days post-surgery. Multiple cell-specific markers were used for high-resolution immunofluorescence confocal microscopy to identify the cell types derived from Aqp2+ cells.

Results Like their embryonic counterparts, adult cells expressing Aqp2 and V-ATPase subunits B1 and B2 (Aqp2+ B1B2+) are the potential Aqp2+ progenitor cells (APs). Adult APs rarely divide to generate daughter cells, either maintaining the property of the AP (self-renewal) or differentiating into DCT2/CNT/CD cells (multipotentiality), forming single cell–derived, multiple-cell clones (clonogenicity) during tissue maintenance. APs selectively and continuously regenerate DCT2/CNT/CD cells in response to injury resulting from ureteral ligation. AP proliferation demonstrated direct correlation with Notch activation and was inversely correlated with development of kidney fibrosis. Derivation of both intercalated and DCT2 cells was found to be cell division–dependent and –independent, most likely through AP differentiation which requires cell division and through direct conversion of APs and/or regular principal cells without cell division, respectively.

Conclusion Our study demonstrates that Aqp2+ B1B2+ cells behave as adult APs to maintain and repair DCT2/CNT1/CNT2/CD segments.

  • adult progenitor cells
  • self-renewal
  • clonogenicity
  • multipotency
  • maintenance
  • unilateral ureteral obstruction
  • thymidine analogue-labeling
  • distal convoluted tubule/connecting tubule/collecting duct
  • lineage tracing
  • kidney fibrosis
  • Copyright © 2022 by the American Society of Nephrology
View Full Text

If you are:

  • an ASN member, select the "ASN Member" login button. 
  • an individual subscriber, login with you User Name and Password.
  • an Institutional user, select the Institution option where you will be presented with a list of Shibboleth federations. If you do not see your federation, contact publications@asn-online.org. 

ASN MEMBER LOGIN

ASN MEMBER LOGIN

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.

Purchase access

Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$34.00

In order to get access to the article, you must have an account.  If you have an account, enter your user name and password into the boxes above. If you do not have an account, follow the instructions below to create one.  Once you have purchased the article, you will have access to it for 24 hours.  

Steps for Creating an Account:

Click the "Purchase Access" button.  The page will redisplay with the following message at the top of the screen. In the message, click to create an account. 

When you create the account, you will be asked to register a user name, email address and you will need to create a password that is at least eight characters in length.  You do not need an ASN Member number to complete the form. As you move through the registration page, you will have to verify you are a person by completing a Captcha request.   Lastly, your first and last name will be required. 

Once your information is successfully saved, the system will redisplay the home page of the journal.  From there, navigate back to the article to purchase.  Select the article and at the bottom of the page, use the credentials you just created to login. The article will be added to your shopping cart.  You can continue to navigate across JASN and CJASN adding to your cart from both journals. When you are ready to complete your purchse, select the Shopping Cart from the upper right hand corner of the page and follow the onscreen instructions. 

PreviousNext
Back to top

In this issue

Journal of the American Society of Nephrology: 33 (5)
Journal of the American Society of Nephrology
Vol. 33, Issue 5
May 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
View Selected Citations (0)
Print
Download PDF
Sign up for Alerts
Email Article
Thank you for your help in sharing the high-quality science in JASN.
Enter multiple addresses on separate lines or separate them with commas.
Aqp2+ Progenitor Cells Maintain and Repair Distal Renal Segments
(Your Name) has sent you a message from American Society of Nephrology
(Your Name) thought you would like to see the American Society of Nephrology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Aqp2+ Progenitor Cells Maintain and Repair Distal Renal Segments
Chao Gao, Long Zhang, Enuo Chen, Wenzheng Zhang
JASN Apr 2022, ASN.2021081105; DOI: 10.1681/ASN.2021081105

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Aqp2+ Progenitor Cells Maintain and Repair Distal Renal Segments
Chao Gao, Long Zhang, Enuo Chen, Wenzheng Zhang
JASN Apr 2022, ASN.2021081105; DOI: 10.1681/ASN.2021081105
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like

Jump to section

  • Article
    • Visual Abstract
    • Abstract
    • Methods
    • Results
    • Discussion
    • Disclosures
    • Funding
    • Acknowledgments
    • Author Contributions
    • Supplemental Material
    • Footnotes
    • References
  • Figures & Data Supps
  • Info & Metrics
  • View PDF

More in this TOC Section

Basic Research

  • Factor H–Related Protein 1 Drives Disease Susceptibility and Prognosis in C3 Glomerulopathy
  • Tumor Lysis Syndrome and AKI: Beyond Crystal Mechanisms
  • Brief Early Life Angiotensin-Converting Enzyme Inhibition Offers Renoprotection in Sheep with a Solitary Functioning Kidney at 8 Months of Age
Show more Basic Research

Cell Biology

  • Lack of Connexin 40 Causes Displacement of Renin-Producing Cells from Afferent Arterioles to the Extraglomerular Mesangium
  • Antineutrophil Cytoplasm Antibody–Stimulated Neutrophil Adhesion Depends on Diacylglycerol Kinase–Catalyzed Phosphatidic Acid Formation
Show more Cell Biology

Cited By...

  • No citing articles found.
  • Google Scholar

Similar Articles

Related Articles

  • PubMed
  • Google Scholar

Keywords

  • adult progenitor cells
  • self-renewal
  • clonogenicity
  • multipotency
  • maintenance
  • unilateral ureteral obstruction
  • thymidine analogue-labeling
  • distal convoluted tubule/connecting tubule/collecting duct
  • lineage tracing
  • kidney fibrosis

Articles

  • Current Issue
  • Early Access
  • Subject Collections
  • Article Archive
  • ASN Annual Meeting Abstracts

Information for Authors

  • Submit a Manuscript
  • Author Resources
  • Editorial Fellowship Program
  • ASN Journal Policies
  • Reuse/Reprint Policy

About

  • JASN
  • ASN
  • ASN Journals
  • ASN Kidney News

Journal Information

  • About JASN
  • JASN Email Alerts
  • JASN Key Impact Information
  • JASN Podcasts
  • JASN RSS Feeds
  • Editorial Board

More Information

  • Advertise
  • ASN Podcasts
  • ASN Publications
  • Become an ASN Member
  • Feedback
  • Follow on Twitter
  • Password/Email Address Changes
  • Subscribe to ASN Journals

© 2022 American Society of Nephrology

Print ISSN - 1046-6673 Online ISSN - 1533-3450

Powered by HighWire