










against lamininb1, b2, and g1 chains. GBM of dogs with
X-linked or autosomal-recessive Alport syndrome stained pos-
itively for laminin b2 andg1 chains but not for the lamininb1
chain (6,7). In knockout mice with autosomal-recessive Alport
syndrome, staining of GBM for lamininb2 andg1 chains was
positive (8,9). In addition, GBM of mice with advanced disease
showed weakly positive staining for the lamininb1 chain.

The notable finding of the present study is that ectopic
deposition of the laminina2 chain in GBM is common to
humans, dogs, and mice with X-linked or autosomal-recessive
forms of Alport syndrome. We did not observe laminina2
chain deposition in GBM of renal specimens from patients with

a variety of other glomerulopathies, indicating that GBM dep-
osition of the laminina2 chain in GBM is unique to Alport
syndrome. We did not attempt to correlate GBM laminina2
chain deposition with subject age, degree of renal functional
impairment, or extent of structural changes by light or electron
microscopy in human and canine subjects. However, GBM
laminina2 chain deposition was observed in Alport males with
normal creatinine clearance as well as those with end-stage

Figure 4. Laminin a2, b1, andg1 in murine kidneys. (A, C, E, G)
Heterozygous mice. (B, D, F, H) Homozygous mice with autosomal-
recessive Alport syndrome. The arrows indicate co-localization of
laminin a2 with g1 (B and D) orb1 (F and H) in GBM of homozy-
gous mice.

Figure 5. Laminin a2 in dog kidneys. (A) Normal; (B) X-linked
Alport syndrome; (C) autosomal-recessive Alport syndrome. There is
weak mesangial staining for laminina2 chain in the normal kidney.
Arrows indicate GBM staining positively for laminina2 chain in
Alport kidneys.
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renal failure, suggesting that this anomaly is not simply a
manifestation of advanced disease. In knockout mice, laminin
a2 deposition in the GBM was observed segmentally at a stage
before proteinuria and reduced glomerular filtration was ap-

parent. In canine Alport syndrome, deposition of laminina2
chain in GBM was observed in dogs with normal renal function
and no proteinuria, as well as in dogs with advanced renal
insufficiency and substantial proteinuria. These observations
suggest that laminina2 deposition is not secondary to defects

Figure 6.Laminin b1 in dog kidneys. (A) Normal; (B) X-linked Alport
syndrome; (C) autosomal-recessive Alport syndrome. There is weak
mesangial staining for lamininb1 chain in the normal kidney. Arrows
indicate GBM staining positively for lamininb1 chain in Alport kidneys.

Figure 7.Lamininb1 in human X-linked Alport syndrome (A, B) and
autosomal-recessive Alport syndrome (C). There is no GBM staining
for laminin b1.
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in renal function but may be a consequence of phenotypic
changes in the cells abutting the mutant GBM.

The laminina2 chain participates in two known laminin trim-
ers: laminin-2 (a2b1g1) and laminin-4 (a2b2g1). Because the
GBM expression of the laminina2 chain in human Alport kid-
neys was not matched by a similar anomaly of lamininb1 ex-
pression, we believe that the laminina2 chain is incorporated into
the human Alport GBM as a component of laminin-4 trimers.
However, in the GBM of Alport mice, both laminin-2 and lami-
nin-4 likely are present, as we could co-localize thea2 andb1
chains. Lamininb1 was also present in some segments of GBM
in dogs with Alport syndrome, suggesting the presence of both
laminin-2 and laminin-4. Extraction of laminin trimers from Al-
port GBM and analysis of their composition would be required to
prove that the laminina2 chains are involved in laminin-2 or
laminin-4 trimers. The discrepancy between human Alport syn-
drome, as opposed to murine and canine Alport syndrome, in
GBM laminin b1 deposition may reflect species-specific differ-
ences in the regulation of the expression of this protein.

Focal GBM staining for the laminina1 chain, probably as
part of the laminin-1 trimer, was observed in mouse Alport
kidneys but not in human Alport kidneys. The reason for this
difference is unknown but may reflect species-specific differ-
ences in laminin gene expression, given that laminina1 chain
is expressed in the mesangium of normal murine kidneys but
not in normal human kidneys. It is not clear whether GBM
deposition of the laminina2 chain has significant structural or
functional consequences. However, this finding adds to the list
of proteins that are uniquely overexpressed in Alport GBM as
a consequence of the absence of thea3, a4, anda5 chains of
type IV collagen: (1) type IV collagena1 anda2 chains, (2)
type V collagen, (3) type VI collagen, and most recently (4) the
laminin a2 chain and (5) the laminina1 andb1 chains in mice
and dogs. These findings emphasize further the critical role
played by thea3, a4, anda5 chains of type IV collagen in
establishing and maintaining the composition, structure, and
function of mature GBM.

Note Added in Proof
Cosgrove and colleagues recently described GBM laminin

a2 expression in a murine different model of autosomal-reces-
sive Alport syndrome (Cosgrove D, Rodgers K, Meehan D,
Miller C, Bovard K, Gilroy A, Gardner H, Kotelianski V,
Gotwals P, Amatucci A, Kalluri R: Integrina1b1 and trans-
forming growth factor-b1 play distinct roles in Alport glomer-
ular pathogenesis and serve as dual targets for metabolic ther-
apy.Am J Pathol157: 1649–1659, 2000).
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