






in cultured endothelial cells, with respect to a possible auto-
crine function for 1�-OHase. Studies of 3H-thymidine incor-
poration showed that 1,25(OH)2D3 inhibited HUVEC prolifer-
ation in a dose-dependent and time-dependent fashion (Figure
4). This response was not as potent as that observed for TNF-�
(5 ng/ml). Furthermore, combined treatment with TNF-� and
1,25(OH)2D3 produced only a modest additive effect. Of in-
terest, the substrate for 1�-OHase, 25(OH)D3, also signifi-
cantly inhibited HUVEC proliferation, despite its status as an
inactive metabolite of vitamin D. However, this effect was
much less potent than that observed for 1,25(OH)2D3, and
combination with TNF-� showed no apparent additive inhibi-
tion of cell proliferation. Data in Figure 5A show that vitamin
D metabolites were also able to increase the capacity for
adhesion of myelomonocytic U937 cells to adhere to HUVEC.
TNF-� (5 ng/ml), used as a positive control, produced the
highest level of U937 adhesion to HUVEC in 24-h treatments.
However, both 1,25(OH)2D3 and 25(OH)D3 significantly en-
hanced the adhesion of U937 cells after the same incubation
period. Analysis of HUVEC ICAM-1 and VCAM-1 expression

by enzyme-linked immunosorbent assay (Figure 5B) indicated
that expression of both the cell adhesion molecules was up-
regulated by 5 ng/ml TNF-�: ICAM-1, 120-fold � 11 com-
pared with untreated HUVEC and VCAM-1, 17-fold � 0.5. In
contrast 1,25(OH)2D3 and 25(OH)D3 (1 to 100 nM) were
without effect.

Discussion
Synthesis of 1,25(OH)2D3 as a consequence of the periph-

eral expression of 1�-OHase has been documented at several
extrarenal sites. In particular, activated macrophages associ-
ated with inflammatory disorders such as sarcoidosis, tubercu-
losis, and rheumatoid arthritis have a high capacity for
1,25(OH)2D3 production, which can, in turn, lead to hypercal-
cemia (2–4,20–22). More recently, the human cDNA for 1�-
OHase was cloned from keratinocytes (23), which appear to
synthesize 1,25(OH)2D3 as part of an autocrine/paracrine com-
ponent of epidermal cell differentiation (24). Although 1�-
OHase expression throughout the body appears to be due to a
single cDNA species (25), there are important differences in

Figure 1. In situ hybridization (ISH) and immunohistochemical (IHC) analysis of 1�-hydroxylase (1�-OHase) expression in human
vasculature. (A) ISH (positive staining dark blue) showing expression in renal arterial endothelial cells (magnification, �500); (B) IHC
(positive staining brown) showing expression of 1�-OHase protein in endothelial cells of renal artery (magnification, �300); (C) ISH negative
control that used a 60-fold excess of unlabeled probe; (D) IHC negative control that used a 100-fold excess of immunizing peptide.
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the regulation of renal and extra-renal 1,25(OH)2D3 produc-
tion. Most notably, peripheral 1�-OHase activity does not
appear to be subject to the exquisite autoregulation observed
for this enzyme in the kidney. Thus, extrarenal synthesis of
1,25(OH)2D3 is very much dependent on the availability of its
substrate 25(OH)D3, which is in turn a direct reflection of
dietary and environmental access to parental vitamin D. In this
way, extrarenal 1�-OHase occupies a unique position at the
interface between the environmental and genetic factors that
determine the actions of vitamin D.

The presence of mRNA and protein for 1�-OHase in the
human vasculature confirms previous in vitro analyses that
have used bovine tissue, which showed that endothelial cells
are capable of synthesizing 1,25(OH)2D3; a possible autocrine/
intracrine mechanism was illustrated by the coexpression of
1�-OHase with VDR and the inhibition of endothelial cell
proliferation after treatment with exogenous 1,25(OH)2D3

(14). More recent work has confirmed the sensitivity of endo-
thelial cells to 1,25(OH)2D3, which suggests in particular that
modulation of angiogenesis may be an important component of
the reported anticancer effects of this hormone (16). However,
as shown in Figure 1, the presence of mRNA and protein for
1�-OHase in blood vessels from normal tissue suggests that

endothelial production of 1,25(OH)2D3 is not associated ex-
clusively with tumors. Indeed, subsequent analysis of lym-
phatic tissue suggests that endothelial expression of 1�-OHase
is more likely to be a feature of inflammatory disease. In this
respect, vascular synthesis of 1,25(OH)2D3 more closely re-
sembles the 1�-OHase activity observed in activated macro-
phages (20–22). In contrast to its renal counterpart, macro-
phage/endothelial cell 1�-OHase is poorly induced by cAMP
activators such as forskolin and shows no self-regulation after
treatment with 1,25(OH)2D3 (5). Instead, the most potent in-
ducers of 1,25(OH)2D3 in macrophages and endothelial cells
appear to be mitogens such as lipopolysaccharide and cyto-
kines including TNF-� and interleukin-1 (2,3,5,7,21,22). The
precise mechanism for this remains unclear. In data presented
here, only treatment with forskolin showed any correlation
between increased synthesis of 1,25(OH)2D3 and 1�-OHase
protein expression. This suggests a mechanism for inflamma-
tion-induced 1�-OHase activity that is distinct from calciotro-
pic transcriptional regulation. For example, studies elsewhere
by Adams et al. (26) have shown that macrophage synthesis of
1,25(OH)2D3 requires coordinated interaction with nitric ox-
ide. In view of the important role of nitric oxide and its
generating enzyme, nitric oxide synthase, in generalized vas-

Figure 2. IHC analysis of 1�-OHase protein expression in endothelial cells from lymphatic tissue. (A) 1�-OHase in postcapillary cuboidal
venules from a tonsil affected by tuberculosis (magnification, �400); parallel analysis of (B) CD34 (endothelial cell marker), (C) actin
(smooth-muscle cells), and (D) CD68 (monocyte marker). Arrows indicate endothelial cells.
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cular function (27), it is probable that they will also influence
endothelial cell 1�-OHase activity.

Reports elsewhere have highlighted the possible importance
of vitamin D in the progression of atherosclerosis, specifically
in the calcification of blood vessels (9,10). The apparent re-
ciprocal relationship between circulating levels of
1,25(OH)2D3 and coronary calcification is clearly different
from the potent calcemic responses observed in other tissues,
including renal stone formation. Thus, data presented here
suggest that 1�-OHase activity in endothelial cells is more
likely to be associated with nonclassical actions of
1,25(OH)2D3. The most well characterized of these are the
potent immunosuppresive and antiproliferative effects of
1,25(OH)2D3 and its synthetic analogs, which have led to
potential treatments for graft rejection, autoimmune disease
(5–8), and specific cancers (28–31). Despite this, the precise
role of 1,25(OH)2D3 as a physiologic modulator of noncalcio-
tropic peripheral tissue function is far less clear. We have
postulated that the localized production of 1,25(OH)2D3 by
activated macrophages and the modulatory effect of this on
adjacent leukocyte populations constitutes a novel cytokine-
like function for this hormone (7). In a similar fashion, reports

elsewhere that have documented the expression and activity of
1�-OHase in normal human colon and prostate tissue suggest
that local synthesis of 1,25(OH)2D3 by these tissues is a con-
tributing factor in associated tumors (32–35). Specifically, the
presence of 1�-OHase activity in primary cultures of normal
prostate cells conferred antiproliferative sensitivity to
25(OH)D3 as well as 1,25(OH)2D3, whereas the loss of the
enzyme in advanced prostate tumors correlated with decreased
sensitivity to 25(OH)D3 (32). The level of 1,25(OH)2D3 pro-
duction by primary HUVEC cultures was significantly lower
than that observed with primary prostate tissue (4000 fmoles/h
per mg protein versus 400 fmoles/h per mg protein). Never-
theless, treatment with 100 nM 25(OH)D3 for 72 h produced a
small but significant decrease in HUVEC proliferation. The
fact that 25(OH)D3 has a binding affinity for the VDR that is
1000 lower than that for 1,25(OH)2D3 suggests that the anti-
poliferative response to 25(OH)D3 in HUVEC is due to auto-
crine activation via 1�-OHase. This effect was not enhanced
by cotreatment with the 1�-OHase inducer TNF-�. However,
at the concentrations and incubations periods used in this
study, TNF-� is itself a potent antiproliferative agent, and, as
such, coincident local conversion of 25(OH)D3 to
1,25(OH)2D3 is likely to have a relatively modest effect.

Studies elsewhere by ourselves and others (15,36,37) have
shown that 1,25(OH)2D3 is also a potent modulator of cell
adhesion. In addition, leukocyte-endothelial cell adhesion is
known to play an important role in both normal vascular
function and pathologic conditions such as atheroscerlosis.
Further studies were therefore carried out to investigate the
interaction between these two mechanisms. Treatment with
either 25(OH)D3 or 1,25(OH)2D3 stimulated adhesion of
monocytic U937 cells to HUVEC after only 24 h treatment,
which indicates that this was a more sensitive autocrine re-
sponse than inhibition of cell proliferation. Induction of cell
adhesion by 25(OH)D3 and 1,25(OH)2D3 was not as potent as
that observed for TNF-�, a classical stimulator of leukocyte-
endothelial cell adhesion. The effects of TNF-� are mediated,
in part, via induction of ICAM-1 and VCAM-1 (38), and this
was confirmed in our enzyme-linked immunosorbent assay
data. In contrast, response to 25(OH)D3 or 1,25(OH)2D3 ap-
pears to be independent of these two adhesion molecules,
which suggests a mechanism that is similar to but distinct from
that observed for inflammatory cytokines. We have reported
elsewhere similar observations for LDL, which stimulated
monocyte-mesangial cell adhesion without any significant
change in ICAM-1 or VCAM-1 expression (19). A variety of
different adhesion molecules may be involved in this process,
including �V�3 integrin, which is known to be expressed by
endothelial cells (39) and is transcriptionally regulated by
1,25(OH)2D3 (36). We can therefore postulate that the induc-
tion of vascular-leukocyte adhesion by vitamin D metabolites
fulfils a different function to the classical response initiated by
inflammatory cytokines. In particular, the effects of vitamin D
on coronary calcification suggest that leukocyte adhesion in-
duced by 1,25(OH)2D3 and possibly paracrine effects of
1,25(OH)2D3 on transmigrating leukocytes have a more bene-
ficial effect on vascular function.

Figure 3. 1�-OHase expression and activity in human umbilical vein
endothelial cells (HUVEC). (A) Western blot analysis of 1�-OHase
and (B) conversion of 3H–25-hydroxyvitamin D3 (25(OH)D3) to
3H–1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (mean � SD, n � 3
preparations) in HUVEC treated with vehicle control (0.1% ethanol)
(C); (10 �M) forskolin (Fors); (100 nM) 1,25(OH)2D3 (1,25D3); (1
�g/ml) lipopolysaccharide (LPS); (30 ng/ml) TNF-�; or (300 U/ml)
interferon-� (INF-�) for 24 h. *P � 0.05 compared with untreated
cells; **P � 0.01 compared with untreated cells.
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The data presented in this study identify endothelial cells as
an important new site of extrarenal synthesis of 1,25(OH)2D3.
In common with other extrarenal tissues, endothelial 1�-hy-
droxylase appears to fulfil an paracrine/autocrine function;
namely, increased endothelial synthesis of 1,25(OH)2D3 may
acts at a local level to modulate the effects of inflammatory
cytokines on the vasculature by promoting leukocyte adhesion.
To date, there have been no specific studies of vascular func-
tion or pathology in patients with hereditary 1�-OHase or VDR
dysfunction or, indeed, their equivalent knockout mice. Further
studies that use these and other model systems will help to
further define the role of vascular vitamin D metabolism in the
pathogenesis and management of vascular disease.
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