Low-Molecular Weight Proteins in End-Stage Renal Disease: Potential Toxicity and Dialytic Removal Mechanisms

WILLIAM R. CLARK*† and DAYONG GAO‡

*Renal Division, Baxter Healthcare Corporation, McGaw Park, Indiana; †Nephrology Division, Indiana University School of Medicine, Indianapolis, Indiana; and ‡Center for Biomedical Engineering, University of Kentucky, Lexington, Kentucky.

Abstract. Low-molecular-weight proteins (LMWP) are now recognized as a distinct class of uremic toxins, and numerous compounds in this category have been identified. Dr. Henderson has spent much of his career investigating ways to enhance the removal of intermediate- and large-sized uremic retention molecules. As LMWP clearly fall under this category, it is fitting to provide a review of several aspects of this molecular class. Normal renal metabolism of LMWP is discussed along with the changes that occur during chronic renal insufficiency. The effect of end-stage renal disease on plasma LMWP concentrations is assessed. As examples of the potential uremic toxicity of this molecular class, leptin, adrenomedullin, and the compounds associated with increased susceptibility to infection are highlighted. Finally, an overview of LMWP removal mechanisms for both hemodialysis and the convective therapies is provided.

With the identification of β2-microglobulin (β2M) as an active participant in dialysis-related amyloid (DRA) fibril formation (1), low-molecular-weight proteins (LMWP) became a distinct class of uremic toxins. Since this discovery, a number of other putative uremic toxins from this same category have been identified (2–6), some of which appear in Table 1. Dr. Henderson has spent much of his career investigating ways to enhance the removal of intermediate- and large-sized uremic retention molecules. As LMWP clearly fall under this category (7), it is fitting to provide a review of several aspects of this molecular class. Specifically, LMWP handling under conditions of renal health and disease, LMWP of potential clinical significance in uremic patients, and dialytic removal of LMWP are discussed.

Renal Handling of LMWP

Normal Renal Elimination

Although not precisely defined, LMWP as a class have a molecular weight spectrum ranging from approximately 1000 to 50,000 daltons. Thus, peptides with as few as 10 amino acids and proteins nearly as large as albumin compose this group (8). Although the initial step in solute removal by the kidney is glomerular filtration, the net elimination of uremic toxins is primarily determined by processes that occur in distal portions of the kidney. The renal handling of LMWP was discussed in two comprehensive reviews published by Carone et al. (8) and Maack et al. (9) and can be summarized as follows. The kidney is responsible for a significant fraction of the metabolic clearance (30% to 80%) of these compounds. The sequential renal metabolic processes are glomerular filtration and luminal resorption at the proximal tubule, with the former as the rate-limiting step. Hydrolysis of the resorbed protein to its constituent amino acids happens within the proximal tubular cell, after which antiluminal resorption by the peritubular capillaries occurs.

Effect of Chronic Renal Insufficiency and End-Stage Renal Disease

A prototypical LMWP for which the metabolism in patients with normal renal function and varying degrees of renal insufficiency has been characterized is complement Factor D, a 23.5-kD upregulator of the alternative complement pathway (10). A significant direct correlation was observed between serum Factor D concentration and serum creatinine, whereas the relationship between serum Factor D concentration and creatinine clearance was very similar to that between serum creatinine and creatinine clearance. In patients with intact glomerular and proximal tubule function, despite a glomerular sieving coefficient of 0.36, <0.2% of filtered Factor D was measured in the final urine. In this study, serum Factor D concentrations in patients with end-stage renal disease (ESRD) were 10- to 20-fold higher than those with normal kidney function.

Kabanda et al. (11) also assessed the effect of ESRD on plasma concentrations of several LMWP in a group of chronic hemodialysis (HD) patients. The specific proteins investigated and some of their physiochemical characteristics are shown in Table 2. The four proteins, cystatin C, β2M, clara cell protein, and retinal binding protein, differ not only in molecular weight but also in their source of generation, molecular dimension, acidity at physiologic pH, and degree of protein binding. As such, they are representative of the diversity of the LMWP
class in its entirety. The mean age of the study group was
approximately 60 yr, and the average dialysis vintage was
approximately 5 yr, with nearly 50% of the patients being
anuric. The patients were treated with dialyzers that had mem-
branes of varying water permeability, surface area, and com-
position. Relative to normal serum concentrations, pre-HD
serum LMWP concentrations were elevated from approxi-
mately threefold (retinol binding protein) to 40-fold (β₂M).

In a multivariate regression analysis, residual diuresis, age, and
gender were found to be significant predictors of pre-HD
serum LMWP concentration. A similar type of analysis re-
vealed molecular radius, dialyzer ultrafiltration coefficient, and
ultrafiltration-related weight loss to be significant predictors of
HD-induced changes in LMWP serum concentration.

Specific Uremic Toxins in the LMWP Class
As Table 1 indicates, a considerable number of putative
uremic toxins in the LMWP category have been identified.
Two molecules and a group of related molecules from this
group, all relatively recently identified, are discussed here.
These molecules have been chosen because they may play a
role in three of the major clinical problems that uremic patients
face: malnutrition, cardiovascular disease, and increased sus-
ceptibility to infection. A discussion of β₂M’s role as a uremic
toxin is not possible here, as a comprehensive review of this
issue constitutes a full manuscript. For such a review, the
reader is referred to an excellent summary published recently
by Drueke (12).

Leptin
Leptin, a 16-kD protein secreted by adipocytes, regulates
body composition by lowering food intake and increasing
metabolic rate (13,14). It circulates in the plasma as both a free
and a bound compound. Although percentage body fat is a
direct determinant of plasma leptin concentration, obesity is
associated with resistance to the protein’s weight-reducing
effects (15). Sharma et al. (5) observed an inverse linear
correlation between serum creatinine and net leptin extraction
by the renal vascular bed, and several studies (5,16–23) in
ESRD patients have demonstrated an increase either in the
absolute plasma leptin level or in the ratio of plasma leptin to
some measure of body fat. The increased leptin concentrations
in uremic patients seem to be due entirely to increases in the
unbound form (23).

Table 1. Potential uremic toxinsa

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Molecular Weight (kD)</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenomedullin</td>
<td>6</td>
<td>Hypotension</td>
</tr>
<tr>
<td>CIP</td>
<td>8.5</td>
<td>Chemotaxis inhibition</td>
</tr>
</tbody>
</table>
| C3a | 8.9 | Anaphylatoil reactions and leukocyte stimula-
| | | tion |
| PTH | 9 | Osteodystrophy; other effects |
| AGE peptides | <10 | Various |
| AGE proteins | >10 | Various |
| C5a | 11 | Anaphylactoid reactions and leukocyte stimula-
| | | tion |
| β₂M | 11.8 | Amyloidosis |
| Leptin | 16 | Malnutrition |
| Myoglobin | 17 | Tubular damage |
| Factor D | 23 | Complement activation |
| GIP I | 28 | Granulocyte inhibition |
| Carbamylated proteins | various | ? anemia |

a CIP, chemotaxis-inhibiting protein; PTH, parathyroid hormone; AGE, advanced glycation endproduct; β₂M, β₂-microglobulin.

Table 2. Low-molecular-weight protein characteristicsb

<table>
<thead>
<tr>
<th></th>
<th>CYST C</th>
<th>β₂M</th>
<th>CC16</th>
<th>RBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight (kD)</td>
<td>13.3</td>
<td>11.8</td>
<td>15.8</td>
<td>21.2</td>
</tr>
<tr>
<td>Molecular radius (nm)</td>
<td>1.51</td>
<td>1.6</td>
<td>1.9</td>
<td>1.75</td>
</tr>
<tr>
<td>Isoelectric point</td>
<td>9.30</td>
<td>~5.5</td>
<td>4.7</td>
<td>~4.6</td>
</tr>
<tr>
<td>Normal serum range (mg/L)</td>
<td>0.6–1.6</td>
<td>1–2</td>
<td>0.05–0.1</td>
<td>50–80</td>
</tr>
<tr>
<td>Predialysis valueb (mg/L)</td>
<td>12 ± 3</td>
<td>39 ± 13</td>
<td>2.9 ± 1.7</td>
<td>166 ± 68</td>
</tr>
<tr>
<td>Postdialysis valueb,c (mg/L)</td>
<td>8.3 ± 4.4</td>
<td>37 ± 15</td>
<td>3.3 ± 2.0</td>
<td>192 ± 78</td>
</tr>
</tbody>
</table>

b Cyst C, cystatin C; β₂M, β₂-microglobulin; CC16, clara cell protein; RBP, retinol binding protein.

Data are presented as mean ± SD.
P < 0.02 versus predialysis value.

Adapted with permission from Kabanda et al. (11).
Leptin’s effects coincide closely with the major clinical findings in malnourished uremic patients (i.e., anorexia and weight loss), and indirect evidence indicates that elevated leptin (or leptin/fat mass) levels are a contributory factor. Young et al. (17) reported a significant inverse relationship between dietary protein intake and the plasma leptin/total fat ratio in an ESRD population. Johansen et al. (18) observed a significant negative correlation between serum leptin levels and several nutritional parameters, including serum albumin, protein catabolic rate, and transferrin. In a cross-sectional analysis of chronic HD patients during a 17-mo period, Odamaki et al. (20) found a significant negative correlation between weight loss and the leptin/body fat mass ratio (Figure 1). Finally, in a longitudinal study, Stenvinkel et al. (22) correlated lean body mass (LBM) changes with plasma leptin and markers of inflammation in incident peritoneal dialysis patients during a 1-yr period. Patients who were losing LBM had higher initial C-reactive protein levels and demonstrated an increase in serum leptin during this time, relative to patients who gained LBM. A significant association between initial C-reactive protein and change in serum leptin during the study period was also observed, suggesting a contributory role for inflammation in the elevation of serum leptin in uremic patients or vice versa. However, both this group of investigators and Arkouche et al. (24) emphasized that there remains no direct proof that increases in serum leptin (or leptin/fat ratio) cause loss of appetite in uremic patients, and further investigation is needed.

Adrenomedullin

Adrenomedullin (ADM) is a 6-kD peptide isolated initially from human pheochromocytoma tissue and bears some structural resemblance to calcitonin gene-related peptide (4,25–27). The compound is a potent vasodilator, and its production seems to be modulated by sympathetic nervous activity, body fluid volume, and BP. Increased ADM plasma concentrations have been found in a broad variety of disorders, including hypertension, congestive heart failure, cirrhosis, chronic obstructive pulmonary disease, and renal failure (27). It is generally assumed that the increased plasma levels observed in renal failure patients are at least partially due to impaired elimination, although this has not been demonstrated definitively. Several studies have assessed plasma ADM levels in chronic HD patients. Washimine et al. (28) found mean pre-HD plasma ADM to be elevated approximately fourfold relative to that of normal control subjects. However, pre-HD mean arterial pressure and plasma ADM were not correlated significantly, and HD did not influence plasma ADM significantly. Toepfer et al. (29) also found no significant effect of HD on plasma ADM, based on the immediate post-HD ADM levels. However, a significant decrease (relative to pre-HD) was observed 14 to 20 h post-HD, as was a significant direct correlation between BP and plasma ADM. Conversely, Mallamaci et al. (30) reported a nearly 50% decrease in plasma ADM (hemoconcentration-corrected) during isolated ultrafiltration, with no change occurring during sham ultrafiltration. It should be noted that patients in each of these studies were treated with low-flux dialyzers. Therefore, the plasma ADM changes described above could not have been related to significant convective dialytic removal of the compound. Finally, Cases et al. (31) explored the possible role of ADM as a mediator of sustained hypotension, defined as a systolic BP lower than 100 mmHg between HD sessions. (The type of dialyzer used in this study was not specified.) A significant inverse correlation was observed between pre-HD mean arterial pressure and plasma ADM (Figure 2), suggesting a role for ADM in the blunted response to pressor stimuli that uremic patients in general are known to have.

The above studies do not provide a straightforward explanation of ADM’s potential role in the cardiovascular pathophysiology of ESRD patients. It is not clear what factors, other than decreased or absent renal clearance, contribute to the significantly elevated ADM levels in ESRD. The data of Mallamaci et al. (30) suggest that fluid overload and hypertension provoke a vasodilatory response in the form of increased ADM

![Figure 1](#) Relationship between body weight change during 17 mo and serum leptin/body mass index ratio in hemodialysis (HD) patients. Reprinted with permission from Odamaki et al. (20).

![Figure 2](#) Inverse relationship between mean arterial pressure and plasma adrenomedullin in HD patients. Reprinted with permission from Cases et al. (31).
generation. As such, elevated ADM plasma levels are simply an epiphenomenon. Conversely, Cases’s data (31) indicate that the potent vasodilatory properties of ADM per se play a pathophysiologic role in hypotension-prone HD patients. If the validity of this latter scenario is confirmed, then efforts to enhance the dialytic removal of this compound in hypotension-prone patients may be useful. Validation of this concept would also lend credence to the hypothesis, posited by Dr. Henderson, that enhanced cardiovascular stability observed during hemofiltration (relative to diffusive HD) is related to the convective removal of a relatively high-molecular-weight vasodepressor substance (32).

Uremic Peptides Involved in Increased Susceptibility to Infection

Hörhl and colleagues (2,6,33–36) identified a series of compounds that may contribute to the enhanced susceptibility of uremic patients to infection. These compounds include granulocyte-inhibiting protein (GIP) I, a 28-kD compound that has significant homology with light chains; GIP II, a 12-kD compound consistent with a modified form of ß-M; and degranulation-inhibiting protein I, a 14.4-kD compound that has an amino acid sequence identical to that of angiogenin. All of these compounds were isolated either from the ultrafiltrate of patients undergoing high-flux dialysis or hemofiltration or from peritoneal dialysate. A more recently identified molecule is the 8.5-kD chemotaxis-inhibiting protein (CIP), also isolated from peritoneal effluent (36). This compound was found to be a modified (more acidic) form of ubiquitous, a putative mediator of muscle wasting in uremia (37). The chemotactic inhibition of both CIP and unmodified ubiquitin was evaluated by measuring the chemotaxis migration distance of polymorphonuclear cells toward a bacteria-derived chemoattractant (N-formyl-leucyl-phenylalanine; Figure 3). Polymorphonuclear cells displayed defective chemotaxis in the presence of CIP (group 1), as did cells that were preincubated only with CIP (group 1r), suggesting an irreversible effect of the peptide on cellular function. Conversely, normal chemotaxis was observed in the presence of unmodified ubiquitin. The authors hypothesized that glycation or carbamylation, two processes known to alter the structure and function of proteins in uremia (3,7,38), is responsible for the modification of ubiquitous to CIP.

LMWP Removal during High-Flux HD

Although not representative of all LMWP (39), ß-M acts as surrogate for this class of molecules, mostly because of the large number of studies that have characterized its dialytic removal. On the basis of these studies (40–44), it is clear that the primary mechanism of ß-M removal is membrane specific. For certain membranes, such as sulfonated polyacrylonitrile (AN69; Hospal, Lyon, France) and particularly polymethylmethacrylate, removal is achieved predominantly or solely by adsorption. Membrane composition and structure (pore size) influence this process both qualitatively (i.e., the specific plasma proteins adsorbed) and quantitatively (45,46). Although the adsorptive removal of LMWP is regarded generally as being beneficial, plasma protein adsorption in general may also influence dialyzer performance in unfavorable ways (47,48). A layer of proteins adsorbed nonspecifically (i.e., the secondary membrane) reduces a dialyzer’s effective water and solute permeability. In general, this layer of proteins is composed predominantly of proteins found in high concentration in the plasma, such as albumin and fibrinogen. This phenomenon may have a particularly significant effect in the convective therapies, as discussed below.

For most membranes used in the diffusive HD mode, however, LMWP are removed by a combination of diffusion and convection. Attempts have been made to quantify the individual contributions of these two processes during HD (49,50). These attempts, however, have been fraught with difficulty for several reasons, not the least of which is the inability to quantify the degree to which internal filtration (51) contributes to convective solute removal. Under normal operating conditions of high-flux HD, fluid flow within the dialyzer is characterized by (forward) filtration (blood to dialysate directionality) in the proximal part of the dialyzer and “backfiltration” (dialysate to blood directionality) in the distal portion of the dialyzer. Although concerning from the perspective that it may result in the transfer of bioactive dialysate contaminants to the bloodstream (52), this internal filtration mechanism is beneficial with respect to the removal of relatively large-sized uremic compounds. In fact, blood-side (decreased hollow fiber inner diameter) (53,54) and dialysate-side (flow path restriction) (55) modifications designed to exploit this internal filtration mechanism were proposed recently to enhance middle molecule removal.

Factors that Influence LMWP Removal in Hemofiltration and Hemodiafiltration

Because of the relatively low absolute ultrafiltration rate used in diffusive HD, plasma proteins that eventually comprise...
the secondary membrane are transported to the dialyzer mem-
brane surface relatively slowly. However, the transport rate of
these proteins is much higher in the convective therapies, and,
in general, secondary membrane effects are a more important
consideration for the convective therapies than for diffusive
HD. (The terms “gel layer” and “protein cake” are frequently
used to refer to the secondary membrane.) This adsorbed layer
effectively represents an additional mass transfer resistance
that reduces the effective solute and water permeability of a
high-flux dialyzer. In vitro data (56–58) indicate that both
hydraulic permeability and large molecule sieving coefficients
decrease substantially when highly permeable membranes are
exposed to protein-containing fluids (relative to membranes
exposed to non–protein-containing fluids).

Röckel et al. (59) investigated the effect of secondary mem-
brane formation on LMWP sieving coefficient (SC) values
during clinical hemofiltration with a high-flux polysulfone
hemofilter. These investigators measured in vivo sieving coef-
ficients for several LMWP ranging in molecular weight from
12 kD (β2-M) to 55 kD (prealbumin). Sieving coefficient de-
terminations were made in the first 10 min (peak SC) and at
treatment times of 20 and 180 min. For each LMWP, a signif-
icant decrease was observed between the peak SC and the
20-min value. This effect was directly proportional to protein
molecular weight such that after 20 min of treatment, no
measurable filtration of solutes of molecular weight >30 kD
was evident.

As Kim (60) has shown, the removal of LMWP during
convective treatments is also influenced greatly by the phe-
nomenon of concentration polarization. This process relates to
the accumulation of a rejected solute at the membrane surface
during filtration. Note that concentration polarization is distinct
from secondary membrane formation, as the former essentially
represents the boundary layer effect for an individual protein,
wheras the latter is a structural mass transfer resistance. This
boundary layer reaches steady state when the rate at which a
protein is convected toward the membrane surface from the
bulk bloodstream region is equal to the rate at which it diffuses
away back into the bulk flow, as recently discussed by Dr.
Henderson himself (61) (Figure 4). The ultimate thickness of
the polarized layer is determined by several factors, especially
blood flow rate, ultrafiltration rate, hematocrit, plasma protein
concentration, and the mode of substitution fluid
administration.

For equivalent ultrafiltration rates up to 110 ml/min (with
Qb = 300 ml/min), several investigators have shown that
postdilution hemodiafiltration is superior to predilution hemo-
diafiltration with respect to removal of LMWP in the 12- to
33-kD range (60,62,63). This benefit of the postdilution mode
is explained by the thicker polarized boundary layer (relative
to the predilution mode) and the associated high-concentration
“submembranous” protein on which the convective forces act.
Because the degree of polarization is directly proportional to
the degree of rejection, the relative benefit of the postdilution
mode generally increases as LMWP molecular weight in-
creases. Unfortunately, these same considerations also apply to
albumin removal. As such, from the perspective of large solute
removal, postdilution hemodiafiltration requires a balance to be
struck between optimized LMWP and minimized albumin
losses.

Summary and Conclusions
Dr. Henderson has spent much of his illustrious career
investigating ways to extend the spectrum of solute removal in
dialysis therapies, and he has had a primary focus on middle
molecules. In this article, several aspects of the middle mole-
cule uremic toxin class of LMWP have been discussed. I close
by taking this opportunity to salute Dr. Henderson for the many
semenal contributions he has made to the field of uremia
therapy. In addition, I extend my sincere appreciation to him
for being such a great mentor and friend during our tenure
together at Baxter during the past seven years.

References
1. Gejyo F, Yamada T, Odani S, Nakagawa Y, Arakawa M, Kuni-
tumo T, Kataoka H, Suzuki M, Hirawaya Y, Shirahama T, Cohen
A, Schmid K: A new form of amyloid protein associated with
chronic hemodialysis was identified as beta2-microglobulin. Bio-
chem Biophys Res Commun 129: 701–706, 1985
2. Hörli WH, Haag-Weber M, Georgopoulos A, Block LH: Physio-
chemical characterization of a polypeptide present in uremic
serum that inhibits the biological activity of polymorphonuclear
3. Makita Z, Bucala R, Rayfield EJ, Friedman EA, Kaufman AM,
Korbet SM, Barth RH, Winston JA, Fuh H, Manogue KR,
Cerami A, Vlassara H: Reactive glycosylation endproducts in
1522, 1994
4. Ishimitsu T, Nishikimi T, Saito Y, Kitamura K, Eto T, Kangawa
K, Matsu H, Omae T, Matsuzka H: Plasma levels of ad-
renomedullin, a newly identified hypotensive peptide, in patients
with hypertension and renal failure. J Clin Invest 94: 2158–2161,
1994
5. Sharma K, Considine RV, Michael B, Dunn SR, Weisberg LS,
Kurnik BRC, Kurnik PB, O’Connor J, Sinha M, Caro JF: Plasma
leptin is partly cleared by the kidney and is elevated in hemodi-

