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Abstract. In contrast to the heart or brain, the kidney can
completely recover from an ischemic or toxic insult that results
in cell death. During recovery from ischemia/reperfusion in-
jury, surviving tubular epithelial cells dedifferentiate and pro-
liferate, eventually replacing the irreversibly injured tubular
epithelial cells and restoring tubular integrity. Repair of the
kidney parallels kidney organogenesis in the high rate of DNA
synthesis and apoptosis and in patterns of gene expression. As
has been shown by proliferating cell nuclear antigen and
5-bromo 2'-deoxyuridine labeling studies and, in unpublished
studies, by counting mitotic spindles identified by labeling
with antitubulin antibody, the proliferative response is rapid
and extensive, involving many of the remaining cells of the

proximal tubule. This extensive proliferative capacity is inter-
preted to reflect the intrinsic ability of the surviving epithelial
cell to adapt to the loss of adjacent cells by dedifferentiating
and proliferating. Adhesion molecules likely play important
roles in the regulation of renal epithelial cell migration, pro-
liferation, and differentiation, as do cytokines and chemokines.
Better understanding of all of the characteristics resulting in
dedifferentiation and proliferation of the proximal tubule epi-
thelial cell and cell–cell and cell–matrix interactions important
for this repair function will lead to novel approaches to ther-
apies designed to facilitate the processes of recovery in
humans.

In contrast to the heart or brain, the kidney can completely
recover from an ischemic or toxic insult that results in cell
death. After severe injury, viable and nonviable cells are des-
quamated, leaving regions where the basement membrane re-
mains as the only barrier between the filtrate and the peritu-
bular interstitium. This allows for backleak of the filtrate,
especially under circumstances in which the pressure in the
tubule is increased as a result of intratubular obstruction that
results from cellular debris in the lumen. In addition, there are
rents in the basement membrane itself that result in leakage
from the bloodstream into the tubule of molecules such as
fibronectin, which may then bind to cells and debris in the
lumen, contributing to the obstruction of the tubule (1).

Repair
When the kidney recovers from acute injury, it relies on a

sequence of events that include epithelial cell spreading and
possibly migration to cover the exposed areas of the basement
membrane, cell dedifferentiation and proliferation to restore
cell number, followed by differentiation, which results in res-
toration of the functional integrity of the nephron (2). In the
gastrointestinal tract, this sequence of events leading to epithe-

lial repair has been referred to as “restitution.” (3). Under
normal circumstances, proximal tubule cells divide at a low
rate, as evaluated by proliferative cell nuclear antigen (PCNA)
and Ki-67 immunoreactivity (4). This cell production balances
the loss of tubular epithelial cells into the urine (5). This
turnover rate must be under tight control as a small imbalance
between cell loss and cell division would soon lead to nephron
loss or marked increases in nephron and kidney size over time.
This low rate of cell turnover changes dramatically after an
ischemic insult in which there is cell death by necrosis and
apoptosis and a response to replace these cells. As we have
shown in PCNA and 5-bromo 2'-deoxyuridine labeling studies
(6) and in unpublished studies, by counting mitotic spindles
identified by labeling them with antitubulin antibodies, this
response is rapid and extensive, involving many of the remain-
ing cells of the proximal tubule (7). We have interpreted this
extensive proliferative capacity to reflect the intrinsic ability of
the surviving epithelial cell to adapt to the loss of adjacent cells
by dedifferentiating and proliferating. The extent of this pro-
cess is, in our opinion, too extensive within 24 h of the insult
to be due to a subpopulation of resident stem cells if that
population is small. In preliminary experiments with bone
marrow transplantation, the number of bone marrow–derived
cells in the repaired kidney is very small, indicating that the
bone marrow is not a significant source to repopulate proximal
tubule cells postischemia (Park K-M and Bonventre JV, un-
published data).

Repair of the kidney parallels kidney organogenesis in the
high rate of DNA synthesis and apoptosis and in patterns of
gene expression. Vimentin, a filament protein that is expressed
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in mesenchymal cells but not in the mature nephron, is detect-
able in proximal tubules for �5 d after ischemia/reperfusion
injury (7). The neural cell adhesion molecule (NCAM), which
is expressed in metanephric mesenchyme but not in mature
kidneys, is abundantly expressed in proximal tubules 5 d after
reperfusion of postischemic rat kidneys (6). Thus, a molecule
not expressed by normal mature renal tubule epithelial cells is
expressed in proximal tubular cells during recovery from isch-
emia, recapitulating its expression in early renal development.
The mitogenic response may be driven in part by autocrine and
paracrine growth factors at the tubular sites of severe injury (8).
This mitogenic potential of adult proximal tubule cells has been
used as a rationale for the therapeutic use of growth factors to
accelerate recovery from acute renal failure (ARF) (9).

Epithelial cell dedifferentiation is a feature of rapidly divid-
ing cells under controlled growth, as in the case postinjury, or
noncontrolled growth, as in the case of cancer. This dediffer-
entiated phenotype in many ways is a reflection of a change in
the gene expression pattern of the cell recapitulating the pattern
that occurs during kidney development before the mesenchy-
mal-epithelial transition has occurred. Renal mesenchymal
cells are dedifferentiated and highly proliferative throughout
the developmental period (10). The dedifferentiated phenotype
is also likely to be important for the spreading migratory
behavior of the viable epithelial cells as they cover the base-
ment membrane during the repair process. The factors respon-
sible for and the significance of reversion to a less differenti-
ated cell phenotype and its relationship to the proliferative and
migratory response after renal epithelial cell injury are poorly
understood.

The loss of the differentiated phenotype of the epithelial cell
of the proximal tubule S3 segment is reflected in a number of
ways. The brush border breaks down (11) with blebbing of the
apical membrane, fragmentation and internalization, and a
rapid change in cell polarity (12). Abnormalities are present in
the apical cortical cytoskeleton as reflected by changes in actin
localization from apical to lateral cell membrane (13,14). With
ATP depletion, cellular free calcium concentration increases,
resulting in activation of proteases and phospholipases, which
in turn contribute to the disruption of the cytoskeleton and
further impair mitochondrial energy metabolism interfering
with production of ATP (15). The apical brush border protein
villin, an actin bundling and severing protein, appears at the
basolateral pole of proximal tubule cells within 1 h after
reperfusion (14). Ezrin is dephosphorylated with ischemia re-
sulting in loss of its ability to tether the actin cytoskeleton to
the membrane (16). There is dephosphorylation and activation
of actin depolymerizing factor, which translocates to the apical
region of the cell and enhances microvillar F actin filament
severing and depolymerization (17).

ATP depletion of the S3 segment of the proximal tubule
(14,18) also results in disruption of cell–cell junctional com-
plexes. Disruption of the tight junction alters both paracellular
permeability and cell polarity. The increase in permeability
results in backleak of glomerular filtrate. The change in cell
polarity has multiple effects resulting from incorrect targeting
of membrane proteins. Changes in the localization of Na�K�-

ATPase, usually confined to the basolateral domain, results in
impaired transcellular sodium transport and an increase in
intraluminal sodium delivery to the distal tubule. The group IV
cytosolic phospholipase A2, which is activated by ischemia and
reperfusion (19), inhibits trafficking of Na�K�-ATPase to the
cell membrane (20). The enhanced distal sodium delivery may
result in afferent arteriole vasoconstriction and reduction in
GFR. In transplant recipients with ischemic injury resulting in
delayed graft function, Kwon et al. (21) demonstrated a strik-
ing increase in fractional excretion of both sodium and lithium,
which are normally co-transported in the proximal and distal
tubules. The observed changes in fractional sodium and lithium
excretion coincide with loss of Na�K�-ATPase from the ba-
solateral membrane of proximal tubules.

In the postischemic kidney, other genes whose expression is,
under normal conditions, otherwise detected at increased levels
in the developing kidney fall into a number of functional
categories. Some encode growth factors IGF-1 (22,23), fibro-
blast growth factors (24–27), and hepatocyte growth factor
(28,29); others encode transcription factors Pax-2 and Egr-1
(30,31). Some encoded proteins, bcl-2 and bax, have been
implicated in apoptosis regulation, a property characteristic of
many renal proximal epithelial cells during both development
(32,33) and after injury (34). Other growth factors, such as
EGF (31,35), and nuclear DNA binding proteins, such as Kid-1
(36), are downregulated in both kidney development and repair
after injury. When and how these genes regulate the differen-
tiation state of the cell are ill-defined.

The dedifferentiation of renal tubular cells to recapitulate
gene expression patterns typical of the developing nephron has
major implications for the regulation of renal repair; however,
the relationships between proliferation and alterations in the
state of cellular differentiation have not been defined. For
example, it is not clear to which stage of development the
tubule cells revert and how the temporal patterns that evolve
may relate to injury, proliferation, and final redifferentiation of
the cell. It is not clear to what extent the inductive interactions
that occur during kidney development are critical for the repair
of the proximal nephron (10).

Dedifferentiation of the epithelial cell may play an important
role in spreading and migration of cells over the denuded
basement membrane early in the recovery process. In a model
in vitro of this process, Toback et al. (37) scratched cells off
the tissue culture plate and monitored the migration of the cells
into the denuded area, as well as the gene expression pattern of
the cells. After “wounding” the monolayer, there was upregu-
lation of the immediate-early genes encoding Egr-1, c-fos,
NAK-1, and gro at 1 h, followed by peak levels of mRNA
encoding connective tissue growth factor and c-myc at 4 h.
mRNA levels of urokinase-type plasminogen activator and its
inhibitor (PAI-1) and heat shock protein-70 were markedly
raised 4 to 8 h after wounding. By contrast, mRNA levels for
osteopontin, EGF, and hepatocyte growth factor (c-met) recep-
tors, were reduced. NAK-1, PAI-1, and heat shock protein-70
were induced or stimulated only in cells at the wound edge.
Adenosine diphosphate, a potent stimulator of cell migration,
stimulated expression of urokinase-type plasminogen activator
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and PAI-1 after wounding. The RET-glial cell-derived neuro-
trophic factor pathway stimulates migration of renal epithelial
cells (38) and may play a role in regulation of migration, but
this has not been studied postischemia. RET-glial cell-derived
neurotrophic factor expression is upregulated in renal epithelial
cells of the dysplastic human kidney associated with obstruc-
tion and high levels of proliferation (39). Another protein,
CD44, which is upregulated in the S3 cell with ischemia/
reperfusion (40), and its ligands osteopontin and hyaluronic
acid, are expressed at wound margins associated with cellular
proliferation and migration of injured mucosal and vascular
endothelial tissues. CD44 peptide is localized to the basal and
lateral cell membranes.

Clearly matrix molecules likely play an important role in the
migration that occurs during the repair process. Within 3 h of
reperfusion after ischemia, cellular fibronectin is deposited
(41). This may stimulate dedifferentiation, based on studies
carried out in the skin, gastrointestinal tract, and cornea. At 1 d
postischemia, hyaluronic acid is upregulated in the interstitium
surrounding regenerating tubules. Osteopontin is upregulated in
the proximal tubules after acute ischemic injury (40,42). Immu-
noreactive osteopontin peptide continues to be localized in those
tubules still undergoing repair for as long as 7 d after the injury.
At later times after ischemia, laminin isoforms are expressed. It
has been proposed that laminin deposition may regulate rediffer-
entiation and repolarization of the epithelium (43).

Cell Adhesion Molecules
Because cell adhesion molecules are of general importance

in cell-substratum integrity and signaling, these molecules
likely play a role as regulators of migration, differentiation, and
proliferation. Cell adhesion and traction allow the cell to pull
itself forward. Cell adhesion molecules have been implicated
in many aspects of cell injury and repair in the kidney. Inte-
grins tether the epithelial cell to the basement membrane via
interaction with the laminin-rich basement membrane. Inte-
grins are heterodimers with one � and one � subunit. Both
subunits are type 1 transmembrane glycoproteins with long
ectodomains and, with the exception of the vertebrate �4
subunit, short intracellular domains (44). The group of inte-
grins that are most widely expressed in the kidney are those
that contain the �1 subunit, the primary family of receptors for
extracellular matrix in mammalian cells (45). It seems that the
�6�1 integrin is the most important laminin receptor integrin in
the adult proximal tubule (45). After ischemia/reperfusion, the
normally basal �1-integrins are relocated to the lateral borders
of the cell (1) and the �3�1 integrin is induced (43).

It is interesting that during normal kidney mesonephros
development, �1-integrins localize to all epithelial cell surfaces
and become localized only to the basal surface of the cell when
the developing nephron elongates and matures (46). The �8�1

integrin is expressed in the kidney. When the gene for �8

subunit is mutated, there is an abnormality in extension of the
ureteric bud, and in most cases, no kidney is formed (47). On
the basis of the idea that “exposed” integrins would facilitate
cell–matrix and cell–cell interactions in the lumen of the
proximal tubule and hence add to the tendency of the luminal

contents to obstruct, Goligorsky and Noiri and colleagues
(48,49) used RGD peptides to compete with integrin receptors.
They found protective effects of these integrins. It is not clear,
however, whether the protective effects found are due to the
envisioned interactions because Zuk et al. (1) found no apical
localization of �1 integrins after ischemia/reperfusion, �1 in-
tegrin staining was not found on free cells in the lumen of the
postischemic proximal tubule. It is possible that the presence of
�6�1 integrin has an effect on the differentiation and polarity of
the proximal tubule and also has an antiproliferative effect. In
human prostate epithelial cells, the loss of this integrin is
associated with decreased polarity and acinar formation in
vitro, properties associated with increased invasiveness of tu-
mors derived from these cells in vivo (50). Integrins are im-
portant for migration during development (51), and it is pos-
sible that the altered localization of integrins in the
postischemic proximal epithelial cell (1) could contribute in
important ways to the ability of the cell to migrate over the
regions of basement membrane exposed by the loss of epithe-
lial cells. Disruption of cell–matrix adhesion would also be
expected to result in apoptosis (52), a feature of the postisch-
emic epithelium (2).

Other adhesion molecules are implicated in control of cell
mitogenesis, differentiation, anchorage dependence, and apo-
ptosis (1,52). NCAM is a member of the Ig superfamily of
proteins that mediate homophilic (NCAM-NCAM) and hetero-
philic cell–cell interactions (53,54). NCAM has been impli-
cated in the control of cell shape and migration (55) and
epithelial polarity (56). In embryonic kidney, NCAM is present
in cells of the metanephric mesenchyme (57–59) that are
induced to aggregate and to increase in density by the ureteric
bud. During conversion to more mature phenotypes, NCAM is
rapidly downregulated (59–61). NCAM is expressed in the
dedifferentiated cells of Wilms tumors, an embryonic type
tumor of the kidney (62). This molecule has been used as a
marker for the dedifferentiated phenotype in studies of meta-
nephric mesenchyme (56,61) and in cultured metanephric cells
(58). We found that NCAM is detectable by immunohisto-
chemistry in renal vesicles, S-shape bodies, and early tubules
(6). There is minimal cellular NCAM expression in tubules of
the adult kidney. In postischemic kidneys, NCAM expression
is abundant in S3 proximal tubule cells 5 d after reperfusion.
As in developing tubules, NCAM is concentrated in basal and
lateral aspects of cells that lack expression of two other mol-
ecules that characterized the differentiated phenotype of the
proximal tubule cell: apical brush border gp330 (63) and dipep-
tidyl peptidase IV (64). The expression of NCAM is preceded
by disassembly of the brush border and proliferation of sur-
viving S3 cells, which is most prominent at 2 d postischemia.
NCAM expression persists in some flattened and dedifferenti-
ated cells for up to 7 wk after ischemia.

Another class of adhesion molecules that may be important
for the regulation of epithelial cell spreading, migration, dif-
ferentiation, and proliferation are the leukocyte-endothelial
adhesion molecules. There are several classes of leukocyte-
endothelial cell adhesion molecules (65), including selectins
and integrins. These molecules regulate the intravascular trap-
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ping of leukocytes. Integrins interact with Ig-like adhesion
molecules such as ICAM and VCAM, which are expressed by
endothelial cells and are upregulated after ischemia in response
to cytokines. We have shown that anti–ICAM-1 antibodies
protect against ischemic renal injury in animals (66) and
ICAM-1 knockout mice are protected (67). These leukocytes
can generate compounds, such as cytokines and chemokines,
which can influence the level of injury, migration, differenti-
ation, and proliferation of kidney epithelial cells. Leukocytes
accumulate in the kidney with ischemic renal injury (67,68).
Different subclasses of leukocytes are likely to be important at
different phases of the injury and repair process in ARF.
Infiltration of macrophages and T lymphocytes may predomi-
nate over neutrophil infiltrate at a later time after ischemia/
reperfusion injury (69). Leukocytes can potentiate renal injury
through generation of reactive oxygen species, which can
upregulate the expression of adhesion molecules on endothelial
cells promoting further leukocyte infiltration. Neutrophils syn-
thesize proteases, including serine proteases, elastase, and met-
alloproteinases (collagenases and gelatinases), that degrade
components of the extracellular matrix. Finally, the leukocyte
produces phospholipase metabolites, including various prod-
ucts of cyclooxygenase, lipoxygenase, and the cytochrome
p450 enzymes, which are important modulators of vascular
tone.

Cytokines and Chemokines
Cytokines have been implicated in lung tissue remodeling.

In this organ, TNF-� and IL-1� stimulate macrophages to
produce matrix metalloproteinase-9 (MMP-9) and stimulate
bronchial epithelial cells to produce extracellular matrix gly-
coproteins such as tenascin (70). Leukocytes produce TGF-�
(71), which influences cell growth, cell differentiation, and cell
chemotaxis. TGF-�1 has been previously shown to promote a
migratory and adherent transformation of monolayers of renal
proximal tubule cells in primary culture. TGF-�1 promotes an
increase in the production of proteoglycans and a higher or-
dered structure of the cytoskeleton of the proximal epithelial
cell, effects important for regulation of the adhesive migratory
response of these cells as well as the DNA synthesis rate
response to both EGF and TGF-�1 (72).

Chemokines and selectins (73) are upregulated by inflam-
matory cytokines, such as IL-1 and TNF-�. Chemokines re-
cruit and, upon adhesion, activate leukocytes. Circulating or
locally produced TNF-� may contribute to leukocyte infiltra-
tion. Infusion of a TNF-� binding protein decreases bioactivity
of TNF-� and neutrophil infiltration and preserved renal func-
tion, suggesting that local TNF-� synthesis may be an early
and pivotal event in renal ischemic/reperfusion injury (74).
Reactive oxygen species produced on reperfusion of the isch-
emic kidney may also upregulate chemokine expression.
Transgenic mice that overproduce the antioxidants intracellular
and extracellular glutathione peroxidases (75) have less histo-
logic injury and preserved renal function after 32 min of
ischemia followed by 24 h of reperfusion. Neutrophil infiltra-
tion was less marked in the transgenic animals compared with
wild-type controls. Thus, ischemia/reperfusion injury involves

a multifactorial inflammatory response initiated by factors that
result in leukocyte infiltration, which can lead to tissue edema
and compromise microvascular blood flow, ultimately leading
to cell apoptosis or necrosis. Chemokines have been implicated
in proliferation, chemotaxis, and remodeling in other tissues
and may have similar effects on the renal epithelium. Mono-
cyte chemotactic protein-1 stimulates human retinal pigment
epithelial cell migration in a dose-dependent manner (76).
CXC chemokines induce hepatocyte proliferation and have
been proposed to be important for liver injury, repair, and
regeneration (77).

Kidney Injury Molecule-1
We have cloned kidney injury molecule-1 (Kim-1) from

rats, mice, and humans. Kim-1 is markedly upregulated on the
proximal tubule in the postischemic rat kidney (78). Structur-
ally, Kim-1 is a member of the Ig gene superfamily most
reminiscent of mucosal addressin cell adhesion molecule 1
with an extracellular Ig and mucin domain. The Kim-1 ectodo-
main is shed into the extracellular milieu of human 769-P
(human kidney adenocarcinoma cells) and HK-2 (human kid-
ney proximal tubular cells) cell lines, which express Kim-1
under normal culture conditions (79). Human KIM-1 protein is
expressed by the proximal tubule of humans with ARF, and the
ectodomain appears in the urine of patients with ARF (80).
Urinary KIM-1 protein levels were more reliable than levels of
urinary �-glutamyltransferase, alkaline phosphatase, and total
protein as a biomarker for tubule injury in ARF. Kim-1 is
expressed on the apical membrane, and it is possible that it is
involved in regulation of spreading, migration, and/or regula-
tion of proliferation and differentiation of the proximal epithe-
lial cells

Conclusions
In summary, during recovery from ischemic/reperfusion in-

jury, surviving tubular epithelial cells dedifferentiate and pro-
liferate, eventually replacing the irreversibly injured tubular
epithelial cells and restoring tubular integrity (2). Renal epi-
thelial cells have a powerful capacity to proliferate and replace
cells that have been lost from the epithelium as a result of the
injury. Better understanding of all of the characteristics result-
ing in dedifferentiation and proliferation of these cells and
cell–cell and cell–matrix interactions important for this repair
function will lead to novel approaches to therapies designed to
facilitate the processes of recovery in humans.
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