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N-acetylcysteine is a remarkably active agent shown to be
useful in a variety of clinical settings. The drug has actions
relevant to radiocontrast-induced nephropathy (RCIN) that in-
clude vasodilatation, enhancement of renal medullary blood
flow, and antioxidant properties. The drug’s pharmacokinetics
are remarkable for almost complete first pass metabolism after
oral administration, resulting in no free drug reaching the
circulation. After intravenous administration, extensive reac-
tion with tissue and plasma proteins greatly limits the amount
of circulating free drug. Given the difficulty achieving free

drug in the systemic circulation, it is highly likely that the drug
works via its metabolites. The primary mechanism may be
through L-cysteine as a cellular source for glutathione produc-
tion. Clinical studies of N-acetylcysteine in the prevention of
RCIN have yielded highly mixed results; five were dramati-
cally positive, and eight others had no demonstrable efficacy at
all. The following will review the individual studies, attempt to
reconcile the divergent results, and propose future research
needs.

Radiocontrast-induced nephropathy (RCIN) may be defined as
an acute deterioration of renal function occurring after expo-
sure to radiocontrast media (RCM). Its incidence varies de-
pending on how it is defined in terms of increase in serum
creatinine, on prophylactic measures employed, and on the
basal risk profile of the population studied. The greatest impact
of RCIN is in severe cases that may require treatment with
renal replacement therapy. In recent studies of patients consid-
ered to be at increased risk, the frequency of need for dialysis
ranged from 0% to 2.6% (1–4). Less severe renal dysfunction
occurs in 11% to 45% of high-risk patients (1–3,5–8). The
clinical impact of lesser degrees of renal impairment may
include increased morbidity, extended length of hospital stay,
total cost of care, and an association with increased mortality
risk (9–12,13). Because there is no medical treatment for
established RCIN, much interest has been directed at ap-
proaches to renal protection and prophylaxis. Saline hydration
has been the most widely used approach, and is believed to be
at least partially effective (14).

In recent years, N-acetylcysteine (NAC), an inexpensive
agent with multiple biologic actions, has been extensively
studied, with some reports indicating outstanding efficacy in
the prevention of RCIN. The drug was initially introduced into

clinical medicine as a mucolytic agent, which led to its use in
pulmonary diseases complicated by obstructive mucous pro-
duction. Later its antioxidant properties led to use in treatment
of acetaminophen overdose (15–17) and in ischemic cardiac
diseases (18,19). The purpose of this review is to review the
pathogenesis of RCIN, to explore the biologic effects and
pharmacokinetics of NAC, and to critically review the litera-
ture on the efficacy of this agent.

Pathogenesis of Radiocontrast-Induced Nephropathy
To appreciate the potential benefit of NAC, it would be

helpful to first review the pathogenesis of RCIN. A single and
precise pathophysiologic mechanism for the development of
RCIN, which can predict and account for the plethora of
generally accepted risk factors, has yet to be defined. It is of
interest to note that only 20 yr ago, renal ischemia, currently
the most comprehensive postulate, was felt to be the least
likely mechanism (20).

Many of the hypotheses for the pathogenesis of RCIN and
the search for reliable animal models were founded on clinical
observations of risk factors for RCIN, which include: volume
depletion, salt depletion, renal insufficiency, heart failure, age,
gender, diabetes, atherosclerosis, intra-arterial injection of con-
trast, and previous history of contrast nephropathy (20–22).
The processes invoked are (1) renal ischemic injury (secondary
to changes in arterial blood flow and altered distribution of
intrarenal blood flow, endothelial cell function, tubuloglo-
merular feedback, and red blood cell deformities); (2) tubular
epithelial cell toxicity (secondary to disruption of cell integrity,
oxygen radical generation, and apoptosis); (3) intratubular ob-
struction; (4) hemoglobin oxygen saturation curve shifts; and
(5) immunologic reactions. Although not excluded, the last
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three processes have not been the subject of extensive studies
and will not be discussed further.

Renal Ischemia
RCIN has long been known to be associated with changes in

renal blood flow. There is a biphasic vascular response with a
brief period of vasodilation, followed by prolonged vasocon-
striction (23–27). Within the kidney, there appears to be a
further redistribution, or shunting, of blood flow resulting in
reduced flow to the medulla (28). Evidence for the effects of
the decreased flow on kidney function and structure was pro-
vided by the work of Heyman et al. (29). These investigators
induced RCIN in rats by performing uninephrectomy and treat-
ment with indomethacin before radiocontrast media infusion.
They found decreased renal perfusion as well as a decrease in
sodium reabsorption. There was severe morphologic injury
limited to the outer medulla, an area highly prone to ischemic
injury, in thick ascending limb segments. The structural
changes correlated closely with reduced creatinine clearance. It
was concluded that hypoxic injury resulted from an imbalance
in metabolic supply and demand, ischemia due to vasoconstric-
tion in the face of increased metabolic work related to in-
creased sodium delivery (29–32). The oxygen content of the
medulla has, in fact, been demonstrated to decrease after RCM
infusion (33). Prasad et al. (34) used a noninvasive technique
to confirm that radiocontrast injection is followed by a de-
crease in medullary oxygen concentration.

The precise mechanism of the decrease in blood flow in
RCIN is unclear at present, but it has been variously ascribed
to an effect on tubularglomerular feedback (TGF), a direct
effect on endothelial cells, an imbalance between vasodilatory
and vasoconstrictive hormones, and an effect on the vascular
smooth muscle itself. The osmotic load following filtration of
contrast media has been proposed to act on the juxtaglomerular
apparatus resulting in vasoconstriction (TGF) (35,36). The
involvement of various mediators of vascular tone and TGF
has been the subject of several investigations as well as clinical
trials using antagonists of endothelin (37–40), adenosine
(23,41,42), and nitric oxide (43,44).

Direct Tubular Toxicity
Epithelial Cell Integrity. The concept that direct tubular

epithelial cell toxicity may have a role in RCIN arose from
studies showing that contrast media caused an enzymuria
(45,46). Hizoh et al. (47) found that high osmolar contrast
media caused detachment in cultured cells and suggested that
tubular tonicity may represent another pathogenic process of
RCIN. Humes et al. (45) found that proximal tubular isolates
had reduced ATP and increased intracellular calcium content (a
marker of injury) after radiocontrast exposure. Furthermore, it
has been found in cultured cells that epithelial membrane
permeability is decreased and tight-junction proteins are redis-
tributed when exposed to hyperosmolar conditions or contrast
agents (46). This may be consistent with the observation of
reduced RCIN risk with low osmolarity agents (26). These
findings, although not sufficient to fully explain the clinical
characteristics of RCIN, do underscore that tubular toxicity

(presumably due to tonicity) may be a component of the
pathogenesis of RCIN and provide one reason for the clinical
success of avoiding dehydration and the preferential use of low
osmolarity contrast agents (36).

Oxidative Radicals. There is evidence that the action of
oxygen-free radicals and lipid peroxidation are involved in
contrast nephropathy (48–50). Osmotic stress can initiate the
production of reactive oxygen species (ROS) (51), and radio-
contrast has similarly been shown to cause their generation
(45) presumably through osmotic affects (52). Bakris et al. (48)
studied radiocontrast media infusion in dogs, and found an
increase in ROS generation. Furthermore, administration of
drugs that either blocked the production or increased degrada-
tion of ROS attenuated the reduction in GFR. In contrast to the
body of work associating RCIN with oxidative injury, Zager et
al. (53) recently found that tubular damage in RCIN can be
completely dissociated from cellular oxidative stress.

Apoptosis. Radiocontrast results in apoptosis of tubular
epithelial cells in vivo (54) and in cultured cells (47,55). Hizoh
et al. (47) found that contrast-induced apoptosis in cultured
cells was due to hyperosmolarity and not hypoxia. In contrast,
other studies have found that epithelial cell apoptosis occurs
after contrast-induced decreases in medullary oxygenation
(54). Testing the hypothesis that antioxidant maneuvers might
decrease hyperosmolar-induced apoptotic changes, Hizoh and
Haller (52) found that taurine but not NAC blocked the effect,
indicating that the induction of apoptosis may not be due solely
to oxidative stress.

Pharmacology
N-acetylcysteine is a modified form of the amino acid cys-

teine, in which the nitrogen atom of the amino group is at-
tached to an acetyl group. The chemical formula is C5H9NO3S,
and the molecular weight 163.2 g/mol (Figure 1). The drug has
been administered by oral and intravenous routes and via
respiratory nebulizer. We shall focus on exploring the pharma-
cology of the oral and intravenous routes of administration.

Early studies of NAC pharmacology were hindered by dif-
ficulty in analysis. Much of this problem relates to the great
activity of the drug’s thiol (S-H) group, which reacts in vivo to
form disulfide linkages, oxidizing the drug (56). The drug may,
therefore, be found in free form in serum or bound in disulfide
linkages with a wide variety of proteins (57). The analytic
system must, therefore, be able to measure both reduced and
oxidized NAC present in soluble and proteinaceous fractions of
the sample.

Using such methods, it has been found that the plasma
half-life of NAC after intravenous injection is approximately 6
to 40 min. The majority of recent studies of NAC in the
prevention of RCIN have involved oral dosing. Of note, it was
found that free drug was undetectable, and oxidized NAC was
present only in low concentrations, after oral administration of
200 mg of NAC, Cotgreave, and Moldeus (56). The less than
5% bioavailability was believed to be due to extensive first
pass metabolism. Furthermore, Harada et al. (58) recently
demonstrated that intravenously administered NAC binds ex-
tensively to plasma and tissue proteins, forming disulfides. As

252 Journal of the American Society of Nephrology J Am Soc Nephrol 15: 251–260, 2004



a result, little free NAC circulates even after intravenous
injection.

Others have confirmed the poor oral availability of NAC.
Borgstrom et al. (59) studied normal volunteers and found the
bioavailability to be between 6 and 10%, with less bioavail-
ability for slow release formulations. Olsson et al. (60) also
studied normal volunteers and found the oral bioavailability to
be 4%. Burgunder et al. (61) found that only a small fraction
of administered NAC reached circulation in its free form.
Bridgeman et al. (62) found no free NAC in plasma after oral
administration. More recently, Tsikas et al. (63) used HPLC to
demonstrate that no NAC is detectable in plasma after oral
administration. Taken together, these results indicate that free
NAC is almost completely metabolized before entering the
systemic circulation.

The low bioavailability of NAC after oral dosing is probably
due to extensive first pass metabolism. Indeed, it has been
repeatedly demonstrated that the intestines and liver effectively
deacetylate NAC (64–69). The reaction, in humans, is primar-
ily catalyzed by the enzyme acylase I (67). After rapid intes-
tinal deactylation in rats, the major metabolites entering the
circulation include cysteine, cystine, inorganic sulfites, ho-
modisulfides of NAC, and labile disulfide complexes with
plasma and tissue proteins (61,68). The deacetylation is so
efficient that, in the portal vein circulation, the concentrations
of metabolites is 300 to 500% higher than that of the parent
drug (68). The resulting cysteine may be used in the liver to
generate glutathione, the major endogenous antioxidant pro-
duced by cells (61–62,68,70), although not all investigators
have found this to occur (71). Hepatically derived glutathione

may subsequently enter the systemic circulation (62). In addi-
tion to the generation and increased serum levels of glutathione
after oral NAC dosing, plasma homocysteine levels decrease
significantly (72).

In the following sections, NAC’s biologic actions will be
reviewed. The preceding discussion should make clear that
NAC’s in vitro activities must be separated from its in vivo
actions. Indeed, there is such extensive first pass metabolism of
NAC after oral dosing that almost no free drug becomes
available to the systemic circulation. Any therapeutic benefits
of oral NAC are probably not direct effects, but rather second-
ary effects such as by the induction of glutathione synthesis.
This may well be true of intravenously administered NAC as
well, because of the extensive disulfide formation with plasma
and tissue proteins, as described above.

Biologic Actions of N-Acetylcysteine
N-acetylcysteine’s first therapeutic use was as a mucolytic

agent. The drug probably works for this purpose by breaking
disulfide linkages between the glycopeptides in mucous (73).
Administration for this use is generally by respiratory nebulizer
because, with oral administration, no active NAC reaches
alveolar fluids (74). A major clinical role for NAC is in the
treatment of acetaminophen overdose. Acetaminophen is me-
tabolized by the liver, resulting in the production of N-acetyl
benzoquinoneimine (75,76), which leads to depletion of he-
patic glutathione. Administration of NAC replenishes glutathi-
one stores and reduces hepatic injury (77,78). Treatment is
particularly effective if initiated within 10 h of overdosage
(75).

Interest in NAC for prevention of RCIN was greatly stimu-
lated by the publication by Tepel et al. (4) in 2000 of study
results indicating outstanding efficacy. In this section, we
explore NAC’s potential therapeutic role in RCIN by examin-
ing its relevant biologic actions. It must be noted that, although
NAC has had a multitude of biologic effects reported, we will
focus on those effects most likely to be relevant to RCIN’s
pathogenesis.

Recently, there has been a great increase in interest regard-
ing NAC’s antioxidant properties. Oxidative stress occurs as a
result of an imbalance between ROS and the body’s native
antioxidant systems (79). NAC is one of a large group of
exogenous antioxidant drugs that may protect against oxidative
tissue injury (80). The antioxidant effects of NAC may be
directly related to the drug itself or to the secondary induction
of glutathione production. Among direct effects of NAC are
reactions with hydroxyl radicals (·OH), resulting in their inac-
tivation (15,81,82). In the process NAC is converted into NAC
thiol radical intermediates, and finally into NAC disulfide (56).
The reaction with ·OH is rapid and vigorous, with a rate
constant of 1.36 � 1010 M-1 sec-1 (81). The drug is a less
effective scavenger of superoxide anion (O2·-1) and hydrogen
peroxide (H2O2) (81). Published studies of direct antioxidant
effects of NAC have generally been performed in vitro. The
significance is questionable given the pharmacokinetics of
NAC discussed above. Little reduced NAC actually reaches the
bloodstream after oral administration.

Figure 1. Chemical structure for N-acetylcysteine. The acetyl group
provides stability, but the NAC’s potent reactivity is due to the
sulfhydryl group.
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A secondary antioxidant effect of NAC is indirect via the
induction of glutathione synthesis. Glutathione (GSH) plays a
key role in the cellular defense against oxidative damage
(83,84). It cannot enter hepatic cells, rather it must be synthe-
sized in situ from its precursors, glycine, glutamate, and cys-
teine. Cysteine is the rate limiting component, and cysteine’s
sulfhydryl group gives GSH its antioxidant power. Upon
deacetylation, NAC becomes L-cysteine, entering cells where
it may serve as a precursor for GSH synthesis. Indeed, NAC
has been shown to prevent GSH depletion and/or to increase
hepatic GSH levels (77,85–87). In the kidney, glutathione has
been shown to be reduced in the ischemia/reperfusion model of
acute renal failure (88,89). Administration of NAC has been
demonstrated to increase renal intracellular GSH levels in rats
(90). It is not known whether oral or intravenous NAC admin-
istration in humans would increase renal GSH concentrations.

There are other biologic actions of NAC that may be salutary
in preventing RCIN. Because vasoconstriction is believed to be
a contributing pathogenic factor in RCIN, vasodilatory effects
may prove helpful. This applies to NAC, perhaps via its ability
to stabilize nitric oxide (91,92). The sulfhydryl group donated
by NAC converts nitric oxide to S-nitrosothiol, a compound
with greater stability and greater ability to activate of guanylate
cyclase (93). Indirect evidence for the role of this mechanism
comes from the findings that (1) NAC improved renal vasodi-
lation in response to acetylcholine (94) and (2) NAC improved
renal function in the intensely vasoconstrictive hepatorenal
syndrome (95). Moreover, Heyman et al. (96) administered
radiocontrast media to rats to induce vasoconstriction. After
intravenous administration of NAC, there was a reduction in
vasoconstriction, which was also found after vasoconstriction
induced by the nitric oxide inhibitor nitro-L-arginine (L-
NAME). The authors concluded that NAC has an important
vasodilatory effect in the preconstricted renal vasculature.
They believe, however, that the effect was not mediated by
nitric oxide. There is also evidence for renal medullary vaso-
constriction in RCIN (34). Conesa et al. (94) studied NAC in
acute renal failure induced by inferior vena cava occlusion, a
model that causes reduced medullar blood flow. They found
that NAC improved the renal failure and outer medullary
vasoconstriction and blood flow. In this study, the effect was
dependent on the presence of nitric oxide. Another mechanism
by which NAC may shift the vasoregulatory balance toward
vasodilation is by inhibiting angiotensin-converting enzyme.
The effect may be mediated by the drug’s sulfhydryl group
(97). Taken together, these studies provide preliminary evi-
dence for NAC as a vasodilatory agent (perhaps mediated via
nitric oxide) that may protect against vasoconstriction in cer-
tain forms of renal disease. To the extent that vasocontriction
is important in the pathogenesis of RCIN, this may prove to be
an important renoprotective mechanism of NAC.

Clinical Studies of NAC in the Prevention of RCIN
Interest in this area grew rapidly with the publication of the

seminal study by Tepel et al., which demonstrated outstanding
efficacy for NAC. Since then, a number of studies with similar
methodology have been published in rapid sequence with de-

cidedly mixed results. The dose used in these studies was quite
low compared with that administered as treatment for acet-
aminophen overdose. In most RCIN studies, NAC was given as
600 mg orally twice daily for 2 d. In acetaminophen overdose,
an NAC loading dose of 140 mg/kg (9800 mg in a 70-kg
patient) is followed by repeated doses of 70 mg/kg. It has been
believed that this high dose can overcome the extensive first
pass metabolism that deactivates NAC (as discussed above).

The definition of RCIN was generally an increase in serum
creatinine (SCr) of 0.5 mg/dl or 25% above baseline at 48 h
after contrast dosing. By itself, such an increase may not
greatly impact clinical outcomes. However, it may be a rea-
sonable surrogate for more relevant outcomes such as need for
dialysis. Such an assumption is reasonable to the extent that a
chain of evidence connects the surrogate to the more global
outcome measure of interest (98). This is likely true in RCIN
because the magnitude of renal dysfunction is probably a
function of disease severity (there is probably a continuous
gradient between mild and severe renal failure) rather than
pathologic heterogeneity (a different disease process causing
mild than that causing severe disease).

Tepel et al., 2000
In this study, 83 patients undergoing contrast-enhanced CT

scanning, with serum creatinine above 1.2 mg/dl or creatinine
clearance �50 ml/min, were enrolled. All patients received
iopromide media in a volume of 75 ml, and intravenous hy-
dration with 0.45% saline at a volume of 1 ml/kg body weight,
for 12 h before and after the procedure. Patients were random-
ized in double blind fashion to treatment with NAC 600 mg
orally twice daily on the day before and the day of the CT scan.
Acute renal failure was defined as an increase in serum creat-
inine (Scr) of 0.5 mg/dl.

Ten of eighty-three patients studied developed acute renal
failure. The rate was dramatically higher in the placebo-treated
group, 21% compared with 2% in the NAC group. In the
NAC-treated group, the mean Scr actually decreased from 2.5
mg/dl to 2.1 mg/dl. No patient in the study required dialytic
support. However, Scr remained elevated in most patients with
ARF by day 6. The drug was relatively well tolerated with only
10% of patients reporting gastrointestinal side effects (4).

Durham et al., 2002
This study from our group tried to replicate Tepel’s finding

in patients undergoing cardiac angiography. Patients with Scr
� 1.7 mg/dl were randomized by double blind methodology to
treatment with either placebo or NAC 1200 mg orally 1 h
before angiography and a second dose 3 h after the procedure.
All patients received intravenous hydration with the regimen
determined by their cardiologist and nephrologist. As in Te-
pel’s study, acute renal failure was defined as an increase in
Scr of 0.5 mg/dl. We found no significant difference in the rate
of renal failure in the two study groups (placebo, 9 of 41
[22.0%]; NAC, 10 of 38 [26.3%]; P � NS). There was one
case requiring dialysis in each group (2). Among patients with
diabetes mellitus, there was a 51% increased rate of acute renal
failure in NAC-treated patients, with a P value of 0.09 (less
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than the specified level for significance of 0.05). This trend
toward potential harm of NAC in patients with diabetes mel-
litus may be consistent with earlier findings by Weisberg et al.
(99). These investigators found that vasodilator drugs in-
creased the risk of RCIN in diabetic subjects. Indeed, as
discussed in the biologic actions of NAC section above, NAC
does seem to have relevant vasodilatory properties that may be
harmful to patients with diabetes.

Other Positive Studies
Diaz-Sandoval et al. (8) studied 54 patients undergoing

cardiac catheterization with Scr � 1.4 mg/dl or CrCl � 50
ml/min. All patients received intravenous hydration with
0.45% saline for variable infused volumes. Patients were ran-
domized to treatment with placebo or NAC by Tepel’s regi-
men. Contrast nephropathy, defined as an increase in Scr of 0.5
mg/dl or 25% over baseline, occurred in 45% of control pa-
tients compared with 8% in the NAC group (P � 0.005). It is
unclear why the rate of RCIN was so high in the placebo group,
because the patient’s characteristics and risk profile were not
very different than the previous studies.

Kay et al. (1) studied 200 patients in Hong Kong with
creatinine clearance �60 ml/min, all undergoing cardiac an-
giography. Patients received 0.9% saline hydration and were
randomized in double blind fashion to treatment with placebo
or NAC by the Tepel protocol. A 25% increase in Scr occurred
in 4% of NAC patients compared with 12% of controls (P �
0.03). In contrast to Durham et al. (2), Kay et al. (1) found
benefit was greater in patients with diabetes mellitus.

Shyu et al. (6) studied 200 patients undergoing cardiac
angiography with Scr � 2, or CrCl � 40 ml/min. All patients
received intravenous hydration with 0.45% saline. Patients
were randomized in single-blind fashion to treatment with
NAC at 400 mg orally twice daily for 2 d or placebo. Serum
creatinine increased by 0.5 mg/dl in 3.3% of the NAC group
subjects compared with 24.6% in the control group (P �
0.001).

Baker et al. (100) randomized 80 patients undergoing car-
diac angiography to treatment with intravenous NAC with
intravenous hydration to treatment with intravenous hydration
alone. The dose of NAC was 150 mg/kg in 500 ml N/saline
over 30 min immediately before contrast followed by 50 mg/kg
in 500 ml N/saline over 4 h. Radiocontrast nephropathy was
significantly reduced in the NAC group, 5% versus 21% in
controls. The NAC infusion had to be terminated early in three
patients due to side effects. This study was notable for the
intravenous route of administration and the very high NAC
doses used. The rapid infusion time would be very practical for
patients in which the need for early drug administration would
postpone the cardiac procedure excessively.

Other Negative Studies
Allaqaband et al. (3) enrolled 123 patients scheduled for

cardiac angiography who had Scr � 1.6 mg/dl or CrCl � 60
ml/min. There were three treatment groups in this unblinded
study: one treated only with saline, one with fenoldapam, and

one with NAC by the Tepel protocol. All patients received
intravenous hydration, and RCIN was defined as an increase in
Scr � 0.5 mg/dl at 48 h postprocedure. There was no signifi-
cant difference in the incidence of RCIN between the groups:
17.7% in the NAC group, 15.3% in the saline group, and
15.7% in the fenoldopam group (P � 0.919).

Boccalandro et al. (5) studied 73 consecutive patients un-
dergoing cardiac catheterization who had Scr � 1.2 mg/dl, and
CrCl � 50 ml/min. Patients were randomized to treatment with
intravenous hydration alone or with NAC using the Tepel
protocol. There was no placebo group. All patients received
intravenous hydration, and RCIN was again defined as an
increase in Scr of 0.5 mg/dl. The incidence of RCIN was 13%
in the acetylcysteine versus 12% in the control group (P �
0.84). By multivariate analysis no unforeseen effects of NAC
were noted.

Briguori et al. (7) studied a broader population, patients
undergoing either cardiac or peripheral angiography. Patients
had Scr � 1.2 mg/dl or CrCl �70 ml/min, and all patients were
treated with intravenous hydration. Patients were randomized
to treatment with intravenous hydration alone or with NAC
using the Tepel protocol. There was no placebo group. An
increase of �25% in Scr 48 h after the procedure occurred in
6 (6.5%) of 92 patients in the NAC group and in 10 (11%) of
91 patients in the hydration alone group (P � 0.22).

Goldenberg et al. (101) performed a randomized trial of 80
patients with Scr � 1.5 mg/dl having cardiac catheterization.
Patients were treated with intravenous hydration with 0.45%
saline and placebo or NAC at a dose of 600 mg orally thrice
daily for 2 d. An increase in Scr of 0.5 mg/dl at 48 h was seen
in 4 of 41 patients in the NAC group compared with 3 of 39 in
the control group (P � NS).

Loutriakis et al. (102) studied 47 patients with Scr � 1.5
mg/dl undergoing cardiac catheterization. Patients were ran-
domized to treatment with NAC by the Tepel protocol or
placebo. All patients received supplemental intravenous hydra-
tion. An increase in Scr of 0.5 mg/dl or 25% from baseline
occurred in 25% of NAC-treated patients and 13.1% of place-
bo-treated patients (P � NS).

Oldemeyer et al. (103) randomized 96 patients having cor-
onary angiography, all with creatinine clearance �50 ml/min
to treatment with NAC 1500 mg orally every 12 h for four
doses or placebo. The definition of RCIN was an increase in
Scr of 0.5 mg/dl or 25% compared with the baseline value. All
patients were hydrated with 0.45% saline at a rate of 1 ml/kg
BW for 12 h before and after the procedure. The rate of RCIN
was 8.2% in the NAC group and 6.4% in the placebo group (P
� 0.74). No protective effect of NAC was found, even among
patients with more severe renal disease at baseline.

Vallero et al. (104) studied 100 consecutive coronary an-
giography patients, of whom 20 had Scr �1.2 mg/dl. All
patients received intravenous hydration. Randomization was
between placebo and NAC administered per the Tepel proto-
col. Two patients in the NAC group and none in the placebo
group had increases in Scr of 0.5 mg/dl at 48 h (P � NS).
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Reconciliation of Study Results
The studies described above have all occurred over a 3-yr

period, emphasizing the great interest in the prevention of
RCIN with NAC. Because of the safety and low cost of this
drug, as well as the lack of any other agent proven to prevent
RCIN, NAC use has become widespread during this period.
The results of the published studies, however, are remarkably
divergent. Five studies demonstrate dramatic efficacy, and
eight show absolutely no effect. In this section, we will review
the published studies with a focus on trying to reconcile the
conflicting results. The studies are remarkably similar, for the
most part, in size and methodology. In addition, they all benefit
from relatively open entry criteria, which make it simple to
extrapolate results to the typical patient population. Table 1
lists the studies, categorized by positive or negative results,
highlighting certain design differences.

Recently Birck et al. (105) systematically reviewed the
literature in the form of a meta-analysis. They found an overall
positive treatment effect with a reduction in RCIN risk of 56%
with the use of NAC. However, this early analysis was con-
ducted using only the first 7 reported NAC trials. As the
authors note, the value of meta-analysis in this field may be
limited due to study heterogeneity and the strong bias against
submission and publication of negative studies.

One important difference between the studies might have
been in the degree of risk for RCIN in the populations studied.
Since most of the studies defined RCIN nearly identically, the
incidence of RCIN in the control groups sheds light on the risk
profile of the patients studied. It is immediately clear that the

rate was significantly lower in the negative studies; the control
group mean of 24.8% in positive studies compared with 11.0%
in the negative studies (simple mean, statistical significance
not tested). This finding is surprising because the entry criteria
for all of the studies were similar. Nonetheless, the difference
would suggest that the negative studies enrolled patients at
lower overall risk of RCIN. By extension, the greatest potential
benefit of NAC may be in higher risk patients.

One initial hypothesis of our group was that our negative
results might have reflected the decision to administer NAC
only on the day of the procedure (1200 mg 1 h before and 3 h
after the procedure) (2). This is in contrast to the protocol used
in most studies (NAC 600 mg twice daily on the day before and
on the day of the procedure). Might it be that the early doses
were necessary for efficacy? It should be noted that several of
the negative studies involved NAC administration on the day
before the procedure, and the study of Baker was positive
despite administration only on the day of the procedure (intra-
venous dosing). NAC’s short half-life and extensive first pass
metabolism (1 to 6 h) would suggest that any drug adminis-
tered the day before the procedure would not be of benefit.
However, because NAC’s salutary effects may be mediated
indirectly (glutathione induction), the native drug’s half-life
may be less important. There is little published evidence to
help understand the time course of orally administered NAC’s
effect on intrarenal glutathione levels. Therefore, early dosing
may be necessary when the drug is administered orally.

Another intriguing difference between the studies is in their
geographic location. Five of six American studies were nega-

Table 1. Randomized trials evaluating N-acetylcysteine for the prevention of radiocontrast-induced nephropathya

Lead Author n
Placebo

Group RCIN
(%)

Renal Entry
Criteria Scr

(mg/dl)/CrCl
(ml/min)

Oral NAC Dose Contrast Procedure Country

Positive studies
Baker 80 21 IV Dose Coronary cath. �/� PCI UK
Diaz-Sandoval 54 45 �1.4/�50 TP Coronary cath. �/� PCI US
Kay 200 12.2 �1.2/�60 TP Coronary cath. �/� PCI China
Shyu 121 24.6 �2/�40 400 mg bd � 2d Coronary cath. �/� PCI Taiwan
Tepel 83 21.4 �1.2/�50 TP CT Germany

Negative studies
Allaqaband 85 15 �1.6/�60 TP Coronary cath. �/� PCI US
Boccalandro 179 12.3 �1.2/�50 TP Coronary cath. �/� PCI US
Briguori 183 11 �1.2/�70 TP Coronary cath. �/� PCI

and peripheral angio
Italy

Durham 79 22 �1.7 1200 mg bd � 1d Coronary cath. �/� PCI US
Goldenberg 80 7.7 �1.5 600 mg td � 2d Coronary cath. �/� PCI Israel
Loutriakis 47 13 �1.5 TP Coronary cath. �/� PCI US
Oldemeyer 96 6.4 CrCl � 50 ml/

min
1500 mg bd � 2d Coronary cath. �/� PCI US

Vallero 20 0 �1.2 TP Coronary cath. �/� PCI Italy

a TP, Tepel Protocol, 600 mg orally twice daily on the day before and the day of the procedure; IV, intravenous; NAC,
N-acetylcysteine; RCIN, Radiocontrast-induced nephropathy; Coronary cath., coronary catheterization; PCI, percutaneous coronary
intervention; Angio, angiography.
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tive. This may just be a chance observation, but we should
consider the possible implications. The formulation of NAC
available in the United States is usually a liquid for oral
administration. In Germany, the drug is distributed in a solid
form, as a tablet. In Taiwan, the drug is distributed as solid
granules. Because of NAC’s highly reactive sulfhydryl group,
the inert substances that the drug is compounded with may
impact the drug’s effectiveness. In addition, in US studies the
drug was generally added to ginger ale, orange juice, or other
beverages to help mask the flavor. It is conceivable that these
may have changed the chemical nature of the drug.

Finally, it is possible, given the small size of the studies, that
either type I or type II statistical errors might be present.
Meta-analyses may be helpful for systematically combining the
results. Ultimately, however, only a well powered randomized
controlled trial would prove efficacy.

Treatment Recommendations
Given the sharply divergent published study results, it is

difficult to synthesize strongly evidence-based recommenda-
tions for the use of NAC in the prevention of RCIN. However,
until definitive studies evaluating efficacy are published, the
current widespread use of NAC is probably appropriate be-
cause (1) there is no other effective drug treatment and because
NAC is (2) inexpensive, (3) safe, and (4) well tolerated. The
greatest risk of widespread use of NAC might be in dissuading
investigators from conducting additional research into NAC’s
activity and studies of other agents that may be effective.
Furthermore, if dose timing is critical, when NAC is used in
conjunction with other prophylactic regimens, which are the
subject of study, its administration may confound the results of
these studies.

Selecting appropriate patients for treatment should follow a
careful clinical evaluation for known RCIN risk factors such as
diabetes mellitus, renal insufficiency, older age, dehydration,
congestive heart failure, need for greater contrast volumes,
multiple myeloma, and hypoalbuminemia (2,10,11,106–108).
It would seem that the Tepel administration protocol (600 mg
orally twice daily on the day before and on the day of the
procedure) is a reasonable treatment approach. Intravenous
hydration was used in most of the studies and is felt to be an
important treatment component (14,109–111). If time permits,
and the patient can tolerate a volume load, then 0.45% or 0.9%
saline may be administered at 1 ml/kg per h for 12 h before and
after the procedure. It should be noted that most NAC studies
included a full course of intravenous hydration. In actual
clinical practice, shorter hydration periods are the norm.
Whether diminution of hydration time impacts NAC effective-
ness is not known. For patients who present as an emergency,
in whom NAC and hydration must be administered rapidly,
intravenous NAC dosing may be helpful. Baker’s intravenous
protocol of 150 mg/kg in 500 ml 0.9% saline over 30 min
immediately before contrast, followed by 50 mg/kg in 500 ml
0.9% saline over 4 h, was found to be quite effective (100).
Further research will be necessary to confirm these positive
results.

Research Directions
Since the publication of the first NAC prevention of RCIN

study, the drug has rapidly become widely used in practice.
This fact should not dissuade investigators from continuing to
conduct research on the drug. Indeed, given the highly mixed
results in the current literature, a definitive study on efficacy is
needed. Furthermore, research into the optimal administration
strategy would quite helpful because the Tepel protocol, with
administration on the day before contrast exposure, is often
impractical. Investigation into NAC drug formulations may be
warranted, with particular attention toward whether the Amer-
ican liquid formulation may be less effective or lose its effec-
tiveness when mixed with beverages to mask its unpleasant
odor and taste. In addition, the mechanisms of NAC’s putative
effect remain incompletely understood. Research seeking to
delineate antioxidant versus vasodilatory properties would be
particularly helpful.
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