Interactions between Angiotensin II and NF-κB–Dependent Pathways in Modulating Macrophage Infiltration in Experimental Diabetic Nephropathy

FIONA T.H. LEE,* ZEMIN CAO,* DAVID M. LONG,* SIANNA PANAGIOTOPoulos,† GEORGE JERUMS,† MARK E. COOPER,* and JOSEPHINE M. FORBES*

*Danielle Alberti Memorial Centre for Diabetes Complications, Vascular Division, Wynn Domain, Baker Medical Research Institute, Melbourne, Australia; and †Department of Endocrinology, Austin Hospital, Heidelberg, Australia

Abstract. NF-κB–dependent pathways play an important role in macrophage infiltration and kidney injury. NF-κB is regulated by angiotensin II (AII). However, the role of this pathway in diabetic nephropathy has not been clearly delineated. First, the activation of NF-κB, monocyte chemoattractant protein-1 (MCP-1), and macrophage infiltration in the diabetic kidney were explored, in a temporal manner. The active subunit of NF-κB, p65, was elevated in the diabetic animals in association with increased MCP-1 gene expression and macrophage infiltration. Second, the effects of treatment for 4 wk with the AII type 1 receptor antagonist valsartan, the AII type 2 receptor antagonist PD123319, or pyrrolidine dithiocarbamate, an inhibitor of NF-κB and on these parameters were assessed. These treatments were associated with a reduction in p65 activation, MCP-1 gene expression, and macrophage infiltration. These findings demonstrate a role for activation of NF-κB, in particular the p65 subunit, in the pathogenesis of early renal macrophage infiltration in experimental diabetes. In the context of the known proinflammatory effects of AII, it is postulated that the renoprotection conferred by angiotensin II receptor antagonism is at least partly related to the inhibition of NF-κB–dependent pathways.

NF-κB is a family of transcription factors that are usually present as dimers, the most common being the p50/p65 heterodimer (1). In contrast to the other subunits, p50 does not contain a transactivating domain. Therefore, homodimers of p50 cause gene repression rather than activation (1). NF-κB is ubiquitously expressed and is usually present in an inactive form bound to an inhibitory subunit (IκB) in the cytoplasm (1). NF-κB has been shown to be activated by AII in various in vitro studies, in rat mesangial (10) and mononuclear cells (11). Increased NF-κB activation was also found in vivo in other forms of experimental renal disease such as immune complex nephritis (11), overload proteinuria (12), and unilateral ureteral obstruction (13).

Upon activation, NF-κB is able to facilitate transcription of a number of genes, including cytokines, adhesion molecules, nitric oxide synthases, and a variety of other inflammatory and proliferative proteins involved in the pathogenesis of diabetic nephropathy (2). For example, production of the chemokine monocyte chemoattractant protein-1 (MCP-1) by mesangial cells has been postulated to be part of an early inflammatory process that causes renal injury in diabetes (14). Transcription of MCP-1 is primarily regulated by NF-κB in endothelial (15), smooth muscle (16), proximal tubular (17), and mesangial cells (18,19).

The renal benefits of blockade of the RAS have been well defined in experimental and human diabetes (7). Angiotensin II (AII) may contribute to renal injury in diabetes via its hemodynamic effects, which include an increase in intraglomerular pressure, or via its effects on cell proliferation and/or inflammation (8,9). There is increasing evidence to suggest a link between AII and NF-κB. NF-κB has been shown previously to be activated by AII in various in vitro studies, in rat mesangial (10) and mononuclear cells (11). Increased NF-κB activation also found in vivo in other forms of experimental renal disease such as immune complex nephritis (11), overload proteinuria (12), and unilateral ureteral obstruction (13).

Therefore, the aims of the present study were, first, to explore the temporal activation of NF-κB, particularly its major subunits p50 and p65, in diabetic kidney. In addition, the NF-κB–dependent chemokine MCP-1 and a functional manifestation of this chemokine, macrophage infiltration, were also...
evaluated (protocol 1). On the basis of the findings for this first protocol, in a separate experiment, the effects of AT II receptor antagonism, with AT II type 1 receptor (AT1) or AT II type 2 receptor (AT2) antagonists, and NF-κB inhibition, with pyrrolidine dithiocarbamate (PDTC), were evaluated in diabetic rats (protocol 2).

Materials and Methods

Experimental Model

Protocol 1. Streptozocin in citrate buffer (55 mg/kg) was injected intravenously after an overnight fast into Male Sprague Dawley rats (Animal Resource Centre, Perth, Western Australia, Australia) to induce experimental diabetes. Animals with plasma glucose concentration >15 mmol/L 1 wk after injection of streptozocin were included in the study as diabetic. Sham-injected control animals (sodium citrate buffer pH 4.5 alone) were followed concurrently. Long-acting insulin (ultratard HM; Novo Industries, Bagsvaerd, Denmark) was administered to the diabetic animals at a dose of 2 U/d by subcutaneous injection to improve the well-being of the animals, to promote weight gain, and to avoid ketonuria. The animals had unrestricted access to water and standard rat diet. The osmotic pumps were inserted subcutaneously in the midscapular region, 2 d after induction of diabetes. The doses of PDTC were adjusted on the basis of previous studies that had used noncontinuous intraperitoneal injections of PDTC, were evaluated (protocol 1). On the basis of the findings for this first protocol, in a separate experiment, the effects of AT II receptor antagonism, with AT II type 1 receptor (AT1) or AT II type 2 receptor (AT2) antagonists, and NF-κB inhibition, with pyrrolidine dithiocarbamate (PDTC), were evaluated in diabetic rats (protocol 2).

Materials and Methods

Experimental Model

Protocol 1. Streptozocin in citrate buffer (55 mg/kg) was injected intravenously after an overnight fast into Male Sprague Dawley rats (Animal Resource Centre, Perth, Western Australia, Australia) to induce experimental diabetes. Animals with plasma glucose concentration >15 mmol/L 1 wk after injection of streptozocin were included in the study as diabetic. Sham-injected control animals (sodium citrate buffer pH 4.5 alone) were followed concurrently. Long-acting insulin (ultratard HM; Novo Industries, Bagsvaerd, Denmark) was administered to the diabetic animals at a dose of 2 U/d by subcutaneous injection to improve the well-being of the animals, to promote weight gain, and to avoid ketonuria. The animals had unrestricted access to water and standard rat diet. The osmotic pumps were inserted subcutaneously in the midscapular region, 2 d after induction of diabetes. The doses of PDTC were adjusted on the basis of previous studies that had used noncontinuous intraperitoneal injections of PDTC, were evaluated (protocol 1). On the basis of the findings for this first protocol, in a separate experiment, the effects of AT II receptor antagonism, with AT II type 1 receptor (AT1) or AT II type 2 receptor (AT2) antagonists, and NF-κB inhibition, with pyrrolidine dithiocarbamate (PDTC), were evaluated in diabetic rats (protocol 2).

Materials and Methods

Experimental Model

Protocol 1. Streptozocin in citrate buffer (55 mg/kg) was injected intravenously after an overnight fast into Male Sprague Dawley rats (Animal Resource Centre, Perth, Western Australia, Australia) to induce experimental diabetes. Animals with plasma glucose concentration >15 mmol/L 1 wk after injection of streptozocin were included in the study as diabetic. Sham-injected control animals (sodium citrate buffer pH 4.5 alone) were followed concurrently. Long-acting insulin (ultratard HM; Novo Industries, Bagsvaerd, Denmark) was administered to the diabetic animals at a dose of 2 U/d by subcutaneous injection to improve the well-being of the animals, to promote weight gain, and to avoid ketonuria. The animals had unrestricted access to water and standard rat diet. The osmotic pumps were inserted subcutaneously in the midscapular region, 2 d after induction of diabetes. The doses of PDTC were adjusted on the basis of previous studies that had used noncontinuous intraperitoneal injections of PDTC, were evaluated (protocol 1). On the basis of the findings for this first protocol, in a separate experiment, the effects of AT II receptor antagonism, with AT II type 1 receptor (AT1) or AT II type 2 receptor (AT2) antagonists, and NF-κB inhibition, with pyrrolidine dithiocarbamate (PDTC), were evaluated in diabetic rats (protocol 2).

Materials and Methods

Experimental Model

Protocol 1. Streptozocin in citrate buffer (55 mg/kg) was injected intravenously after an overnight fast into Male Sprague Dawley rats (Animal Resource Centre, Perth, Western Australia, Australia) to induce experimental diabetes. Animals with plasma glucose concentration >15 mmol/L 1 wk after injection of streptozocin were included in the study as diabetic. Sham-injected control animals (sodium citrate buffer pH 4.5 alone) were followed concurrently. Long-acting insulin (ultratard HM; Novo Industries, Bagsvaerd, Denmark) was administered to the diabetic animals at a dose of 2 U/d by subcutaneous injection to improve the well-being of the animals, to promote weight gain, and to avoid ketonuria. The animals had unrestricted access to water and standard rat diet. The osmotic pumps were inserted subcutaneously in the midscapular region, 2 d after induction of diabetes. The doses of PDTC were adjusted on the basis of previous studies that had used noncontinuous intraperitoneal injections of PDTC, were evaluated (protocol 1). On the basis of the findings for this first protocol, in a separate experiment, the effects of AT II receptor antagonism, with AT II type 1 receptor (AT1) or AT II type 2 receptor (AT2) antagonists, and NF-κB inhibition, with pyrrolidine dithiocarbamate (PDTC), were evaluated in diabetic rats (protocol 2).

Materials and Methods

Experimental Model

Protocol 1. Streptozocin in citrate buffer (55 mg/kg) was injected intravenously after an overnight fast into Male Sprague Dawley rats (Animal Resource Centre, Perth, Western Australia, Australia) to induce experimental diabetes. Animals with plasma glucose concentration >15 mmol/L 1 wk after injection of streptozocin were included in the study as diabetic. Sham-injected control animals (sodium citrate buffer pH 4.5 alone) were followed concurrently. Long-acting insulin (ultratard HM; Novo Industries, Bagsvaerd, Denmark) was administered to the diabetic animals at a dose of 2 U/d by subcutaneous injection to improve the well-being of the animals, to promote weight gain, and to avoid ketonuria. The animals had unrestricted access to water and standard rat diet. The osmotic pumps were inserted subcutaneously in the midscapular region, 2 d after induction of diabetes. The doses of PDTC were adjusted on the basis of previous studies that had used noncontinuous intraperitoneal injections of PDTC, were evaluated (protocol 1). On the basis of the findings for this first protocol, in a separate experiment, the effects of AT II receptor antagonism, with AT II type 1 receptor (AT1) or AT II type 2 receptor (AT2) antagonists, and NF-κB inhibition, with pyrrolidine dithiocarbamate (PDTC), were evaluated in diabetic rats (protocol 2).

Materials and Methods

Experimental Model

Protocol 1. Streptozocin in citrate buffer (55 mg/kg) was injected intravenously after an overnight fast into Male Sprague Dawley rats (Animal Resource Centre, Perth, Western Australia, Australia) to induce experimental diabetes. Animals with plasma glucose concentration >15 mmol/L 1 wk after injection of streptozocin were included in the study as diabetic. Sham-injected control animals (sodium citrate buffer pH 4.5 alone) were followed concurrently. Long-acting insulin (ultratard HM; Novo Industries, Bagsvaerd, Denmark) was administered to the diabetic animals at a dose of 2 U/d by subcutaneous injection to improve the well-being of the animals, to promote weight gain, and to avoid ketonuria. The animals had unrestricted access to water and standard rat diet. The osmotic pumps were inserted subcutaneously in the midscapular region, 2 d after induction of diabetes. The doses of PDTC were adjusted on the basis of previous studies that had used noncontinuous intraperitoneal injections of PDTC, were evaluated (protocol 1). On the basis of the findings for this first protocol, in a separate experiment, the effects of AT II receptor antagonism, with AT II type 1 receptor (AT1) or AT II type 2 receptor (AT2) antagonists, and NF-κB inhibition, with pyrrolidine dithiocarbamate (PDTC), were evaluated in diabetic rats (protocol 2).
CCAGG-3'; Promega, Madison, WI) were end labeled with γ32P-dATP (GeneWorks Pty Ltd, Adelaide, SA, Australia) using T4 kinase (Promega) and T4 kinase buffer (Promega). Binding of nuclear protein to radiolabeled oligonucleotide was performed by equilibrating nuclear extract in a mixture that contained 7 μg of nuclear protein extract, 0.25 μl of poly dL-dC (Amersham Pharmacia Biotech, Buckinghamshire, UK), and 10 μl of binding buffer (5 mM MgCl2, 5 mM Tris-HCl, 20% glycerol, 2.5 mM EDTA, 2.5 mM dithiothreitol). After this, 1 μl of 32P-labeled NF-κB probe (150,000 cpm, Cherenkov counting) was added. The DNA-protein complexes were resolved by non-denaturing 7% PAGE (Tris, borate, EDTA). The gel was run at 150 V for 50 min. Autoradiographs were prepared by exposing the dried gel to x-ray film (Kodak Biomax, Integrated Sciences, Melbourne, Australia) with intensifying screens for 7 to 12 h at −70°C.

The specificity of the NF-κB electromobility shift assay (EMSA) was determined with reactions that contained 100-fold excess of either unlabeled NF-κB oligonucleotide or mutant NF-κB oligonucleotide (5′-AGTTGAGGCGACTTTC-CCAGG-3′; Santa Cruz Biotechnology, Santa Cruz, CA). To determine the subunit composition of the NF-κB complexes, we performed supershift analysis using antibodies to either the p50 subunit (Santa Cruz Biotechnology) or the p65 subunit (Chemicon International, Temecula, CA). EMSA supershift was performed on six samples from each group.

Immunohistochemistry for the p50 Subunit of NF-κB, ED-1, and IκBα

Immunohistochemical studies were performed on formalin-fixed, paraffin-embedded kidney sections (4 μm) that were dewaxed and hydrated as described previously (25). Antigen retrieval for monocytes/macrophages (ED-1) immunohistochemistry was completed with protease digestion (0.0125 g of bacterial protease VIII [Sigma Chemical] in 50 ml of PBS for 3 min at 37°C). Antigen retrieval for IκBα was performed with 0.05 g of trypsin and 0.05 g of calcium chloride in 50 ml of TBS for 25 min at 37°C. Antigen retrieval for the activated p65 subunit of NF-κB (nuclear localization sequence) was performed by microwaving in 0.01 M citrate buffer (pH 6.0) for 2 × 10 min. The protein expression of activated p50 subunit of NF-κB (NLS region) was assessed using the DAKO Catalyzed Signal Amplification System (DAKO Corporation, Carpinteria, CA). A modification of the ABC Ig enzyme technique was used, as described previously (25), for ED-1 and IκBα. Primary antibodies included rabbit anti-p50 (0.5 μg/ml; Santa Cruz Biotechnology) diluted 1:500 in TBST and applied for 15 min, mouse anti-rat ED-1 antibody (Serotec, Oxford, UK; 0.25 mg/0.25 ml) diluted 1:50 in 10% horse serum applied for 1 h at room temperature, mouse anti-p65 (0.2 μg/ml; Chemicon International) applied in 1% BSA overnight at 4°C, and rabbit polyclonal IκBα (Santa Cruz Biotechnology) diluted 1:100 in PBS applied overnight at 4°C. Tissue sections were then stained with biotinylated IgG (Vector Laboratories, Burlingame, CA). Avidin biotin complex (Vectastain ABC Elite Kit; Vector Laboratories) was applied for 30 min. Sections were developed for 4 min using 3,3′-diaminobenzidine in 0.1 mol/L PBS containing 0.03% hydrogen peroxide. The slides were then counterstained with Harris hematoxylin, dehydrated, mounted, and coverslipped using dePex (BDH). Negative controls were prepared by replacing the primary antibody with PBS. These negative controls showed no immunoreactivity (data not shown).

Quantification of p50 and IκBα staining in the kidney cortex was performed using a videomaging system (Video Pro 32; Leading Edge, Bedford Park, SA, Australia) connected to a Zeiss AXIO-PHOT microscope (Stuttgart, Germany) (27). Measurements were performed in a masked manner by a single observer. In 15 to 20 high-power fields (×400) per section, the number of ED-1–positive cells within a 1-cm2 eyepiece graticule with 10 equidistant grid lines was counted. The result was expressed as the average number of ED-1–positive cells per area counted (×400).

Determination of mRNA Levels of MCP-1

Six micrograms of total RNA extracted from each kidney was used to synthesize cDNA with the Superscript First Strand synthesis system for reverse transcription–PCR (RT-PCR; Life Technologies BRL, Grand Island, NY). Gene expression was analyzed by real-time quantitative RT-PCR performed with the TaqMan system based on real-time detection of accumulated fluorescence (ABI Prism 7700, Perkin-Elmer, Foster City, CA) (28). Fluorescence for each cycle was analyzed quantitatively by an ABI Prism 7700 Sequence Detection System (Perkin-Elmer, PE Biosystems, Foster City, CA). For controlling variation in the amount of DNA available for PCR in the different samples, gene expression of the target sequence was normalized in relation to the expression of an endogenous control, 18S ribosomal RNA (rRNA; 18S rRNA TaqMan Control Reagent kit; ABI Prism 7700). Primers and TaqMan probe for MCP-1 (forward primer, CTCAGCCAGATGCAGTAATGC; reverse primer, AGCCGACTTGGGATCAT; probe, 6FAM-CACCTGCTGC-TCTCAGCCAGATGCAGTAATGC-TAMRA) and the endogenous reference 18S rRNA were constructed with the help of Primer Express (ABI Prism 7700). The amplification was performed with the following time course: 50°C for 2 min and 95°C for 10 min and 40 cycles at 94°C for 20 s and at 60°C for 1 min. Each sample was tested in triplicate. Results are expressed relative to control kidney values, which were arbitrarily assigned a value of 1.

Statistical Analyses

Results are expressed as mean ± SEM unless otherwise specified. Analyses were performed by ANOVA followed by post hoc analysis using Fisher least significant difference method, correcting for multiple comparisons. P < 0.05 was considered to be statistically significant.

Results

Protocol 1

Biochemical and Metabolic Parameters. At all four time points, diabetic rats had significantly elevated GHb and plasma glucose levels and lower body weight as compared with control rats (Table 1). Despite this, the diabetic animals had larger
Table 1. Metabolic Parameters in Protocol 1: Time course of NF-κB activation

| Group | n | Glucose (mmol/L) | Ghb (%) | Kidney Weight (g) | Body Weight (g) | Albumin Excretion Rate (mg/24 h) | Urine Volume (ml/24 h) | Tubulointerstitial Area (%)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 wk C</td>
<td>8</td>
<td>6.9 ± 0.2</td>
<td>4.1 ± 0.1</td>
<td>370 ± 20</td>
<td>170 ± 10</td>
<td>0.49 ± 0.2</td>
<td>14 ± 6</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>4 wk D</td>
<td>8</td>
<td>3.10 ± 0.12</td>
<td>3.54 ± 0.12</td>
<td>357 ± 20</td>
<td>170 ± 10</td>
<td>0.49 ± 0.2</td>
<td>14 ± 6</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>12 wk C</td>
<td>6</td>
<td>2.54 ± 0.12</td>
<td>3.6 ± 0.2</td>
<td>357 ± 20</td>
<td>170 ± 10</td>
<td>0.49 ± 0.2</td>
<td>14 ± 6</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>12 wk D</td>
<td>6</td>
<td>2.54 ± 0.12</td>
<td>3.6 ± 0.2</td>
<td>357 ± 20</td>
<td>170 ± 10</td>
<td>0.49 ± 0.2</td>
<td>14 ± 6</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>20 wk C</td>
<td>8</td>
<td>2.74 ± 0.12</td>
<td>3.6 ± 0.2</td>
<td>357 ± 20</td>
<td>170 ± 10</td>
<td>0.49 ± 0.2</td>
<td>14 ± 6</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>20 wk D</td>
<td>8</td>
<td>2.74 ± 0.12</td>
<td>3.6 ± 0.2</td>
<td>357 ± 20</td>
<td>170 ± 10</td>
<td>0.49 ± 0.2</td>
<td>14 ± 6</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>32 wk C</td>
<td>8</td>
<td>2.74 ± 0.12</td>
<td>3.6 ± 0.2</td>
<td>357 ± 20</td>
<td>170 ± 10</td>
<td>0.49 ± 0.2</td>
<td>14 ± 6</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>32 wk D</td>
<td>8</td>
<td>2.74 ± 0.12</td>
<td>3.6 ± 0.2</td>
<td>357 ± 20</td>
<td>170 ± 10</td>
<td>0.49 ± 0.2</td>
<td>14 ± 6</td>
<td>2.1 ± 0.1</td>
</tr>
</tbody>
</table>

- Data are shown as mean ± SEM. Body weight and urine volume are expressed as mean ± SD. AER, albumin excretion rate; C, control; D, diabetic.

Structural Parameters

Diabetes-associated increases in the glomerulosclerotic index (GSI) were seen only at week 32 (Table 1). There were no differences in GSI between control and diabetic kidneys at any other time point. Tubulointerstitial area was significantly increased in diabetic animals by week 4 and increased further at each time point as compared with controls, being maximal at week 32 (Table 1).

EMSA

EMSA on nuclear extracts from kidney cortex showed evidence of two bands. With the addition of 100-fold excess concentration of competitive cold oligonucleotide, there was elimination of both bands, indicating specificity for NF-κB. However, addition of mutant NF-κB oligonucleotide resulted in the loss of the lower band, suggesting specific NF-κB binding only in the upper band as previously reported (1).

EMSA was performed on six to eight animals at each time point. The resulting band density of diabetic and control animals was then compared and expressed as a percentage of an external control sample run on each individual gel. At 4 and 20 wk, there was no significant change in total active NF-κB (Figure 1). There was a threefold increase in NF-κB after 12 wk of diabetes. By 32 wk, however, there was a significant decrease in this parameter with diabetes.

By supershift analysis, in control animals, p50 was the main subunit contributing to total NF-κB band density (Figure 1). In diabetic animals, although p50 remained the major subunit, the percentage contribution by p65 was increased at all time points compared with controls (Figure 2A). This increase in p65 with diabetic animals was greatest at 4 wk with a reduction over time. In contrast, the changes in p50 in diabetic animals paralleled those seen with total activated NF-κB.

Activated p50 Subunit of NF-κB. Immunohistochemistry demonstrated evidence of the activated p50 subunit of NF-κB throughout the kidney, particularly in proximal and distal tubular cells (Figure 3). There was occasional staining of glomerular cells. The proportional area stained was significantly increased in diabetes at 12 wk and was significantly reduced in diabetic animals at 32 wk (Figure 4A). There was no significant change in proportional area of p50 staining with diabetes at 4 or 20 wk. There was no staining seen in the negative control sections (Figure 3E). Staining for activated p50 paralleled changes in total NF-κB activation as detected by EMSA (Figure 1A) and activated p50 (Figure 1B) as assessed by the supershift assay.

1κBα Immunohistochemistry. When compared with control animals, there was a significant increase in 1κBα with diabetic kidney only at 12 wk (Figure 4B). At all other time points, there were decreases in 1κBα. Overall, the diabetes-induced change in 1κBα reflected changes in activated NF-κB as detected by EMSA (Figure 1A) and immunohistochemistry for the activated p50 subunit (Figure 4A).

MCP-1 Gene Expression. MCP-1 gene expression was increased by 4 wk in diabetic kidneys (Figure 2B). At 12 wk,
there was only a small increase in MCP-1 expression with diabetes, but this was followed by a significant decrease by 20 and 32 wk. The changes in renal gene expression for MCP-1 between diabetes and control animals paralleled changes seen with respect to the p65 subunit (Figure 2A).

Protocol 2

Biochemical and Metabolic Parameters. After 4 wk of diabetes, plasma glucose was significantly elevated compared with control animals (Table 2). BP was significantly elevated in diabetic animals and was significantly reduced by treatments except insulin. Diabetic animals had significantly lower body weight than control animals, but kidney weight was elevated in diabetic rats. Valsartan and PDTC, however, were associated with significantly lower kidney weights than seen in untreated diabetic rats. Albumin excretion rate was mildly increased in diabetic rats. Treatment of diabetic animals with valsartan was associated with a significant reduction in albuminuria as compared with untreated animals.

Structural Parameters. There was no increase in GSI seen with diabetes by week 4. However, treatment with valsartan produced a significant decrease, albeit modest in GSI (Table 2). Diabetes induced a significant increase in tubulointerstitial area by week 4. This increase was attenuated by treatment with either valsartan or the NF-κB inhibitor PDTC. No beneficial effects on tubulointerstitial area were noted for PD123319 (Table 2).

EMSA and Supershift Assay. At 4 wk, only PDTC caused a significant reduction in activated total NF-κB in the diabetic rats. Supershift assay showed that p50 accounted for the majority of the NF-κB band in all groups. However, the p65 subunit was elevated in diabetic animals and was attenuated by valsartan, PD123319, and PDTC treatment (Figure 6A).

Immunohistochemistry for p65 and p50 Subunits. Immunohistochemistry for p50 paralleled changes in total activated NF-κB as detected by EMSA (Figure 7B). There was a reduction with diabetes that was not significantly affected by valsartan or PD123319 treatment. PDTC reduced activated p50 to a level below all other groups. Consistent with the EMSA findings, immunohistochemistry for the activated p65 subunit of NF-κB was increased by diabetes at 4 wk. Localization of p65 was demonstrated within nuclei of both tubular epithelial cells and glomerular cells, which was minimal in control tissues (Figure 8). There was some reduction in the distribution and intensity of staining seen within treatment groups at 4 wk.

MCP-1 Gene Expression. Real-time RT-PCR revealed in diabetic animals a significant increase in MCP-1 gene expression that was significantly reduced by valsartan and PDTC, with a more modest reduction with PD123319 treatment (Figure 6B). These changes in MCP-1 gene expression paralleled changes in p65, as assessed by supershift analysis (Figure 7B).
ED-1 Immunohistochemistry. Increased ED-1–positive monocytes/macrophages in diabetic animals was prevented by valsartan and PDTC treatment but not by PD123319 treatment (Figure 6C). These changes in ED-1 immunostaining paralleled changes in MCP-1 gene expression (Figure 6B) and p65 subunit, as assessed by supershift assay (Figure 6A).

Discussion

In the present study, temporal changes were identified in the expression of NF-κB and the p50 and p65 subunits in the renal cortex over the duration of diabetes. Total activated NF-κB as detected by EMSA correlated with changes in the p50 subunit. The proportion of the p65 subunit, however, was greater in diabetic animals at all time points when compared with control animals but was maximally expressed at 4 wk of diabetes. These diabetes-induced increases in the activation of the p65 subunit of NF-κB were associated with an increase in the chemotactic factor MCP-1 as well as infiltration of macrophages. In addition, there was a modest increase in tubulointerstitial area seen at this time point with diabetes. These pathologic changes were attenuated by blockade of the RAS with valsartan and, importantly, the NF-κB inhibitor PDTC. PD123319 had modest effects on NF-κB expression. The inhibitory subunit of NF-κB, IκBα was significantly increased by week 12 of diabetes but was reduced significantly by 32 wk.

There is increasing evidence that inflammatory cells and cytokines contribute to diabetic nephropathy (3), and it has been identified that specific activation of the p65 subunit may
be an important mediator of these events. Not only was p65 activation confirmed by EMSA, but also immunohistochemical studies at the 4-wk time point revealed nuclear translocation of the p65 subunit. Activation of this nuclear transcription factor subunit leads to production of chemokines, proinflammatory cytokines, and adhesion molecules. In particular, the chemokine MCP-1 is considered to be specifically activated by NF-κB (29), especially in the presence of high glucose (19). The present study demonstrated that MCP-1 expression correlated with p65 activation. There were parallel changes in p65 and MCP-1 expression, with the greatest increase in p65 and MCP-1 in diabetic animals occurring at 4 wk. The correlation between MCP-1 and p65 demonstrated in vivo in this study is consistent with previously reported in vitro findings by Ueda et al. (29). Total NF-κB activation and specific activation of the p50 subunit did not correlate with MCP-1 gene expression in diabetic animals. P50 activation was maximal at week 12, when MCP-1 gene expression had decreased. These findings are consistent with the view that the p50 subunit exists as a homodimer without an ability to cause transactivation of target genes, whereas the p65 subunit contains a transactivating domain and therefore can activate transcription of target genes such as MCP-1 (1).

The temporal fluctuations in NF-κB in the diabetic context are occurring over weeks in this study and are in contrast to those that would be predicted if the changes in NF-κB were part of an acute stress response. The response to acute stimuli, which has been studied more extensively in relation to NF-κB, has been shown to result in rapid phosphorylation of the inhibitory subunit IkBα, which detaches from the nuclear localization sequence to activate NF-κB (30), terminating within hours with the resynthesis and binding of IkBα. Thus,
there is tightly controlled feedback inhibition occurring with acute stimuli to prevent persistent NF-κB activation (31). Our data demonstrated that IκB levels correlate with activated NF-κB, and this is consistent with the fact that translocation of NF-κB to the nucleus causes upregulation of IκB gene transcription. However, more recently, studies have suggested that this autoregulatory mechanism can be overcome in disease states to produce more prolonged activation of NF-κB (19). It is likely that such a mechanism is operative in a more chronic context such as seen in the present renal diabetic study.

Table 2. Metabolic parameters in protocol 2: Treatment with inhibitors of RAS or NF-κB activation

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Glucose (mmol/L)</th>
<th>Body Weight (g; Mean ± SD)</th>
<th>Kidney Weight (g)</th>
<th>Urine Volume (ml/24 h; Mean ± SD)</th>
<th>Blood Pressure (mm Hg)</th>
<th>AER (mg/24 h)</th>
<th>Glomerulosclerotic Index</th>
<th>Tubulointerstitial Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8</td>
<td>6.4 ± 0.2</td>
<td>410 ± 17</td>
<td>1.55 ± 0.04</td>
<td>16 ± 1</td>
<td>126 ± 3</td>
<td>0.28 ± 1.3</td>
<td>1.3 ± 0.3</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>Diabetes</td>
<td>8</td>
<td>27.5 ± 0.5c</td>
<td>280 ± 9c</td>
<td>1.82 ± 0.06d</td>
<td>134 ± 8c</td>
<td>152 ± 5c</td>
<td>0.92 ± 1.1c</td>
<td>1.2 ± 0.3</td>
<td>3.0 ± 0.2h</td>
</tr>
<tr>
<td>D + Valsartan</td>
<td>8</td>
<td>30.6 ± 0.3c</td>
<td>290 ± 10c</td>
<td>1.56 ± 0.07e</td>
<td>157 ± 9c</td>
<td>137 ± 3c</td>
<td>0.75 ± 1.1d</td>
<td>0.9 ± 0.2c</td>
<td>1.6 ± 0.2c, f</td>
</tr>
<tr>
<td>D + PD123319</td>
<td>8</td>
<td>29.1 ± 0.7c</td>
<td>270 ± 9c</td>
<td>1.72 ± 0.09f</td>
<td>135 ± 14c</td>
<td>140 ± 3cg</td>
<td>1.09 ± 1.1c</td>
<td>1.5 ± 0.2</td>
<td>2.7 ± 0.1f</td>
</tr>
<tr>
<td>D + PDTTC</td>
<td>8</td>
<td>30.4 ± 1.3c</td>
<td>278 ± 9c</td>
<td>1.57 ± 0.06e</td>
<td>199 ± 11cg</td>
<td>124 ± 4c</td>
<td>1.16 ± 1.1c</td>
<td>1.1 ± 0.1</td>
<td>2.1 ± 0.2e</td>
</tr>
</tbody>
</table>

a Data are shown as mean ± SEM. PDTC, pyrrolidone dithiocarbamate.
b Shown as geometric mean ± tolerance factor.
c P < 0.0001 versus control.
d P < 0.05 versus control.
e P = 0.005 versus control.
f P < 0.01 versus diabetes.
g P < 0.05 versus control.
h P < 0.05 versus diabetes.
i P < 0.02 versus control.
could speculate that the increases in both the expression of \(\text{IkB}\alpha \) and of the nontransactivating subunit of NF-\(\kappa \)B, p50, were an attempt to return the balance of renal gene expression toward control levels. This is supported by the reduction with diabetes at week 32 in each of these “protective” regulatory subunits, where the greatest degree of renal injury, as assessed by increases in tubulointerstitial area and glomerulosclerosis, in the context of increased albuminuria is seen. Indeed, this suggests that it may be the balance between “protective” \(\text{IkB}\alpha \) and the pathogenic p65 subunit that is the most important determinant of renal damage. It is of interest that most rat models of diabetes do not develop advanced renal disease or exhibit significant decline in renal function. It is possible that these “adaptive” changes including reduced NF-\(\kappa \)B activation prevent ongoing severe and progressive renal injury (14,19,23). Diabetic animals had a trend toward increased renal monocyte/macrophage accumulation as assessed by ED-1 immunohistochemistry at all time points, particularly at 4 wk. Renal ED-1 immunostaining correlated with both MCP-1 gene expression and p65 activation, consistent with the previously reported associations between these pathways in the diabetic kidney (19,32). This link between NF-\(\kappa \)B, MCP-1, and mac-
phage infiltration is consistent with the transcription of the chemokine MCP-1 being facilitated by the activation and translocation of the p65 subunit of NF-κB, which would contribute to early recruitment of macrophages in the diabetic kidney. It is likely that other factors are also involved, with hyperglycemia per se having been reported to induce another protein involved in macrophage recruitment, intracellular adhesion molecule-1, whose expression is NF-κB dependent (33). Consistent with our data, Young et al. (34) found glomerular macrophage infiltration beginning at 3 d and peaking at 30 d in diabetic rats. It is interesting that other groups have shown that infiltrating peripheral blood mononuclear cells themselves may contribute to the level of NF-κB activation (35), which is consistent with the correlation between infiltrating cells and active p65 subunits in the present study.

Activation of the NF-κB subunits p50 and p65 were localized predominately within the i tubules, although significant expression was also seen in glomeruli. The predominance of tubular expression is consistent with studies indicating that NF-κB–dependent proteins such as MCP-1 and the prosclerotic TGF-β1 and CTGF are produced by proximal tubules as assessed in both in vitro and in vivo approaches (36–40). The tubules account for the majority of the renal cortical mass, and tubulointerstitial injury therefore is an important feature of diabetic nephropathy (41). Indeed, an increase in tubulointerstitial area is the number one predictor of progressive renal disease. The present study showed significant tubulointerstitial expansion, which increased in a time-dependent manner in the diabetic animals. Nevertheless, it remains to be determined whether the interventions to reduce NF-κB will ultimately lead to long-term beneficial effects on renal structure and function. Blockade of the RAS has early effects that ultimately lead to long-term preservation of renal function (20,36–41). Indeed, the findings of the present study, in which interruption of the RAS influenced NF-κB activation, could partly explain some of the renoprotective effects observed with agents such as the AT1 receptor antagonist valsartan. The extent of glomerulosclerosis seen in the present study was less marked than tubulointerstitial changes.

Glomerular injury in this model seemed to be more clearly evident after the onset of tubulointerstitial changes. In general, glomerulosclerosis is detected in experimental diabetes after the development of macroalbuminuria, which occurs after at least 12 wk in this model (42). The issue of the relative involvement and importance of the glomerulus versus the renal tubule in the progression of diabetic nephropathy remains unresolved, although most investigators would agree that both renal compartments play a pivotal role (41).
As the degree of p65 subunit activation was greatest at week 4 in the initial experiment, we proceeded to study the effects of inhibition of the RAS as compared with NF-κB blockade at this time point (protocol 2). Increased MCP-1 gene expression in diabetic animals was attenuated by treatment with AT1 antagonism and with the AT2 receptor antagonist to a lesser degree. Treatment with the AT1 receptor antagonist also reduced the macrophage infiltration, although this effect was not seen with the AT2 antagonist. In the present study, the AT1 receptor was shown to be important in mediating inflammatory effects and cellular infiltration as has been described previously, albeit in a non-diabetic context (43). These molecular and cellular effects of the AT1 receptor antagonist translated to a decrease in tubulointerstitial area. By contrast, the AT2 receptor blocker did not significantly influence macrophage infiltration and therefore tubulointerstitial area in this model.

NF-κB blockade by PDTC resulted in a similar degree of inhibition of MCP-1 gene expression and subsequent macrophage infiltration as observed with the AT1 antagonist. This is consistent with NF-κB being a major pathway by which AII mediates inflammatory responses in this model, primarily via the AT1 receptor as suggested within this model. Such a possibility has previously been shown in vitro, where NF-κB activation by AII increased expression of MCP-1 in cultured rat mesangial and mononuclear cells (10,11). Blockade of the RAS has also been shown specifically to reduce MCP-1 expression in short-term experimental diabetes (32). Although NF-κB was not implicated in that study, it is interesting to note that the major increases found were MCP-1 and IL-1β, which both are postulated to be regulated by NF-κB. A role for both AT1 and AT2 receptors in AII-mediated activation of NF-κB has been demonstrated by Wolf et al. (44) and by Ruiz-Ortega et al. (10,45) in vivo. Our data are consistent with these findings but suggest a more dominant role for the AT1 over the AT2 receptor subtype, as both PDTC and AT1 receptor blockade showed greater inhibition of MCP-1 expression and macrophage infiltration than AT2 receptor blockade. Further evidence to suggest a more dominant role for the AT1 rather than the AT2 receptor subtype in mediating various markers of renal injury can be identified in the present study with a more powerful effect of valsartan versus PD123319 in attenuating diabetes-associated renal hypertrophy and tubulointerstitial expansion. Although there is increasing evidence that the AT2 receptor may play a role in chronic renal disease, these data support the hypothesis that the AT1 receptor plays a more significant role (46). In the present study, 4 wk of diabetes was associated with changes in the p65 subunit, which paralleled the changes seen in MCP-1 gene expression and macrophage infiltration. Blockade of AT1, AT2, or NF-κB reduced p65 activation in diabetic animals, although to different degrees as discussed above. This suggests that not only is p65 an important correlate of downstream markers of inflammation, but it also seems to be the major subunit involved in the signaling pathway of AII, which ultimately leads to the inflammatory response.

This study has provided in vivo evidence that there are temporal changes in NF-κB with the evolution of experimental diabetic nephropathy. NF-κB, in particular the p65 subunit, seems to be an important mediator of the effects of AII predominately via the AT1 receptor but also the AT2 receptor subtype, resulting in an increase in MCP-1 expression and macrophage infiltration in the early stages of experimental diabetes. The similarity in the effects observed with the AT1 receptor antagonist and the NF-κB inhibitor PDTC provides additional evidence linking activation of NF-κB by RAS to diabetes-associated renal injury. In the context of the known proinflammatory effects of AII, it is postulated that the renoprotection conferred by AT1 receptor antagonism is at least partly related to the inhibition of NF-κB dependent pathways.

Acknowledgments

These studies were supported by grants from the Juvenile Diabetes Research Foundation (JDRF), the National Health and Medical Research Council of Australia, and the CardioVascular Lipids Research Granting Body. Z.C. is a recipient of an Advanced Postdoctoral Fellowship, and J.F. is a recipient of a Postdoctoral Fellowship, both from the JDRF.

We thank Maryann Arnstein, Gavin Langmaid, and Kelly Goldring for technical assistance.

References

