






changes of EC (Figure 4B). In contrast, glomeruli in TMA
DXS-treated rats maintained normal structure, and endothelial
fenestrations remained intact (Figure 4, C and D).

Binding of Biotin-Labeled DXS to Vasculature in Rats
with TMA

To confirm the binding of DXS to the glomerular endothe-
lium, rats with TMA or without TMA received biotin-labeled
DXS injection 10 min after injection of anti-GEN antibody or
PBS, respectively. One day after injection, kidney sections were
analyzed by fluorescence microscopy. Biotin-DXS staining was
detected on the surface of the glomerular endothelium in the

kidney with TMA, whereas no staining was detected in the
kidney without TMA (Figure 5). These results indicated that
DXS could bind only to the surface of injured endothelium.

DXS Does Not Affect Anti-GEN Antibody Binding
Finally, to ensure that the results of this study were not due

simply to differences in the binding of the disease-inducing
antibody, we examined anti-GEN antibody deposition by stain-
ing tissue sections with the anti-goat IgG antibody. The density
of goat anti-GEN was observed without any differences be-
tween vehicle-treated and DXS-treated rats (Table 2).

Figure 1. Renal histologic injury in experimental thrombotic microangiopathy (TMA). Periodic acid-Schiff staining showed that the
rats with TMA displayed thrombi in glomerular capillary loops, tubular necrosis, sloughing of tubular epithelial cells, and tubular
cast formation (A and C). Dextran sulfate (DXS)-treated rats had less injury and showed preservation of glomerular and tubular
architecture (B and D). Magnification, �200 in A and B; �400 in C and D.

Table 1. Semiquantitative analysis of histologic and immunochemical studiesa

Characteristic Vehicle-Treated DXS-Treated

PAS-positive score
glomerular 1.49 � 0.23b 0.56 � 0.15
tubular 1.31 � 0.23c 0.59 � 0.15

Fibrin glomerular thrombus formation score 1.46 � 0.25 0.80 � 0.14
Glomerular endothelial score 1.85 � 0.12c 2.97 � 0.14

aDXS, dextran sulfate; PAS, periodic acid-Schiff.
bP � 0.001 vehicle-treated versus DXS-treated group.
cP � 0.01 vehicle-treated versus DXS-treated group.
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Discussion
TMA is a significant cause of acute renal failure, and in some

instances, patients progress to ESRD. The experimental model
of TMA has provided a unique opportunity to study disease
mechanisms and potential therapies. For example, VEGF pro-
tects the kidney in this model (26). The beneficial effect of VEGF
may comprise not only a survival factor but also an angiogenic
factor for glomerular capillary endothelium. Neutralization
studies of a specific complement regulatory protein (27) and
studies with C6-deficient animals have also shown a crucial
role of complement activation in glomerular endothelium in-
jury in this model (28). In this study, we show that DXS injec-
tion after the injection of antiglomerular EC antibody protected
the glomerular endothelium and preserved renal functions.

Although TMA can be caused by several diseases, they all
share common histologic features within the kidney. These
include significant renal microvascular EC injury, complement

activation, platelet infiltration, fibrin deposition, and renal fail-
ure (1,4). These changes are due to injury primarily to the
glomerular EC. This provides the rationale for our study to test
the hypothesis that DXS, a member of the glycosaminoglycan
family, can protect animals with experimental TMA. The major
findings in our study were that DXS treatment significantly
improved renal function, and this was accompanied by marked
preservation of tissue injury. Staining with JG-12 antibody and
estimation of glomerular endothelium by perfusion of biotin-
ylated lectin demonstrated that DXS treatment protected the
glomerular endothelium from the damage in rats with experi-
mental TMA. We observed more PCNA-positive cells as well as
upregulation of VEGF in vehicle-treated glomeruli. It is likely
that these results reflect compensatory responses against glo-
merular endothelial damage, as we reported previously (1).

DXS can protect the endothelium via several potential mech-
anisms. DXS has an anticoagulation effect, although the affinity

Figure 2. Thrombus formation and complement activation in the glomeruli of TMA rats. Marked deposition of fibrin was observed
in the glomeruli of TMA rats (A). DXS treatment demonstrated less fibrin deposition (B). Similarly, marked deposition of C3 was
observed in the glomeruli of TMA rats (C). DXS treatment resulted in less C3 deposition in glomeruli (D). Magnification, �400.

Table 2. Image analysis of histologic and immunochemical studies

Characteristic Vehicle-Treated DXS-Treated

Glomerular goat antiglomerular endothelial
cell IgG–positive area (%)

58.16 � 6.57 51.97 � 7.19

Glomerular C3 deposition–positive area (%) 26.78 � 5.76a 0.96 � 0.24

P � 0.0001 vehicle-treated versus DXS-treated group.
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of DXS to antithrombin is three orders smaller than the affinity
of heparin (29). It has also been known for a decade that low
molecular weight DXS is an efficient inhibitor of complement
activation (24). Indeed, our results show that glomerular C3
staining was reduced in the DXS group compared with control.
Studies have shown that DXS inhibits all three pathways of
complement activation and dose-dependently protected pig
cells from deposition of human complement, and the EC-pro-
tective effect of DXS correlated with binding of the substance to
the cells (30).

Complement-mediated EC activation and damage have also
been demonstrated in the pathophysiology of acute vascular
rejection in xenotransplantation (31). DXS inhibits complement

in vitro experiments using human serum and porcine cells (32).
Similarly, DXS inhibited complement in vivo by preventing
hamster cardiac xenografts from undergoing acute vascular
rejection, and DXS in combination with cyclosporin A signifi-
cantly prolonged xenograft survival rate (33). Taken together,
we postulate that DXS ameliorated renal injury in our study by
inhibiting the coagulation cascade and by inhibiting comple-
ment activation.

Another important mechanism of endothelium protection
was proposed by Laumonier et al. (30), who suggested that DXS
acted locally and might functionally replace HSPG that are
known to be shed from the EC surface upon activation. HSPG
modulate the actions of a large number of extracellular ligands
(34,35) and are involved in the preservation of the critical
anticoagulant surface of vascular EC (36). They called these
effects of DXS a “repair coat” by re-establishing an anticoagu-
lant and anti-inflammatory surface (30). In this study, by using
a specific antibody for glomerular heparan sulfate, we showed
that most parts of glomerular loops lost HSPG in TMA-induced
rats, whereas HSPG covered all parts of glomerular loops in
normal rats (Figure 6). In addition, by using biotin-labeled DXS,
we showed that DXS binds to the glomerular endothelium in
TMA-induced rats. The binding of DXS to the endothelium
requires EC damage, because DXS did not bind to the endo-
thelium of uninjured normal rats.

Recent analysis has revealed that HSPG exists on the surface
of the glomerular basement membrane (GBM) and endothe-
lium (37). HSPG on the GBM is considered to play the key role
for charge selective moiety of glomerular protein filtration,
because quantitative changes in HSPG have been observed in a
number of proteinuric nephropathies (38). HSPG on the glo-
merular endothelium is considered to play a role in leukocyte
infiltration, because lack of HSPG promotes the increase in
vascular permeability and leukocyte extravasation under in-
flammatory conditions (19). However, proteinuria or leukocyte
infiltration into the glomeruli could not be observed in this
model of TMA (1). This result also suggests that replaced DXS
bears functions, such as “repair coat,” other than having been
previously reported. Another possible mechanism of renopro-
tection by DXS is prevention of the deposition of anti-GEN IgG
on the surface of glomerular endothelium, but this is unlikely
because our immunofluorescence studies demonstrated that
the deposition of anti-GEN IgG was not different between the
two groups.

Although DXS injection via right renal artery was effective in
this study, intravenous injection of DXS at the same dosage had
no beneficial effects on renal functions, EC injury, or comple-
ment activation (data not shown). A possible explanation for
this difference by injection route might be dose-dependence of
DXS, i.e., a much higher dose of DXS might be needed. It should
be noted that no signs of acute toxicity of DXS administration
were observed by either way of injection.

In conclusion, DXS has an important protective effect in
experimental TMA. This is likely mediated by complement
inhibition, anticoagulation, and endothelial protection by re-
establishing the intact surface of injured endothelium. Supple-

Figure 3. Preservation of the glomerular and peritubular capil-
lary network by DXS treatment. JG-12 staining demonstrated
preservation of the glomerular and peritubular capillary endo-
thelium in TMA rats with DXS treatment (B) than in TMA rats
without DXS treatment (A). Sections were double-stained with
biotinylated lectin and anti–proliferating cell nuclear antigen
(PCNA). Lectin staining (brown) demonstrated preservation of
the glomerular and peritubular capillary endothelium in TMA
rats by DXS treatment (D) than in TMA rats without DXS
treatment (C). In contrast, PCNA-positive cells (black) in the
glomeruli without DXS treatment (D) were markedly increased
than those in the glomeruli without DXS treatment (C). Expres-
sions of vascular endothelial growth factor in the glomeruli
without DXS treatment (E) were markedly increased than those
in the glomeruli without DXS treatment (F). Magnification,
�400.

3002 Journal of the American Society of Nephrology J Am Soc Nephrol 16: 2997–3005, 2005



Figure 5. Binding of biotin-labeled DXS to rat glomerular endothelium. Marked binding of DXS was observed in the glomeruli of
TMA-induced rats (A). In contrast, no binding of DXS was observed in the glomeruli of non-TMA rats (B). Magnification, �200.

Figure 4. Electron microscopic analysis of the glomeruli in control TMA vehicle-treated rats (A and B) and TMA DXS-treated
rats (C and D). (A) Marked reduction or occlusion of the capillary lumina by red blood cells, fibrin strands (F), expanded
subendothelial space, and swelling of endothelial cells (EC). Electron lucent fluffy materials (arrow), fragmented red blood
cells (*), and fibrin strands occupied the subendothelial spaces. Endothelial cells (E) had enlarged cytoplasm with an
increased number of organelle. (B) In the most severely affected area, capillary lumina revealed irregular dilation with
marked fibrinous exudate (F), amorphous material, cellular debris (arrowhead), and fragmented blood cells. Denudation and
fragmentation of EC (arrow) was noticed. (C) Almost normal configuration of a glomerulus. A few red blood cells could be
detected in the loops. (D) Glomerular EC showed no remarkable change and preserved fenestrations (arrow). Magnification,
�2000 in A, B, and C; �12,000 in D.
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mentation of glycosaminoglycans may present a new approach
for treatment of glomerular endothelial injury.
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