Uric Acid, the Metabolic Syndrome, and Renal Disease

Pietro Cirillo, Waichi Sato, Sirirat Reungjui, Marcelo Heinig, Michael Gersch, Yuri Sautin, Takahiko Nakagawa, and Richard J. Johnson

Division of Nephrology, Hypertension and Transplantation, University of Florida, Gainesville, Florida

Metabolic syndrome, characterized by truncal obesity, hypertriglyceridemia, elevated BP, and insulin resistance, is recognized increasingly as a major risk factor for kidney disease and also is a common feature of patients who are on dialysis. One feature that is common to patients with metabolic syndrome is an elevated uric acid. Although often considered to be secondary to hyperinsulinemia, recent evidence supports a primary role for uric acid in mediating this syndrome. Specifically, fructose, which rapidly can cause metabolic syndrome in rats, also raises uric acid, and lowering uric acid in fructose-fed rats prevents features of the metabolic syndrome. Uric acid also can accelerate renal disease in experimental animals and epidemiologically is associated with progressive renal disease in humans. It is proposed that fructose- and purine-rich foods that have in common the raising of uric acid may have a role in the epidemic of metabolic syndrome and renal disease that is occurring throughout the world.

The mechanism(s) by which metabolic syndrome might accelerate renal disease remains unclear. One possibility relates to the presence of obesity itself. Obesity has been found to be an independent risk factor for CKD (12,14), and treating obesity might stabilize renal function (15) or reverse early hemodynamic abnormalities and glomerular dysfunction (16). Obesity has been associated with a type of focal segmental glomerulosclerosis (FSGS) called “obesity-related glomerulopathy” (17). Hall et al. (18) proposed that lipid deposition in the inner medulla increases intrarenal pressure, leading to decreased tubular flow, which results in increased sodium reabsorption in Henle loop, volume expansion, and the development of systemic hypertension. Obesity also increases the risk factor for diabetes and hypertension and has been shown to lead to glomerular hypertension and hyperfiltration (18). The metabolic syndrome also is associated with the release of inflammatory cytokines and the presence of endothelial dysfunction and oxidative stress (19), all which could contribute to the development of glomerulosclerosis. Insulin resistance also may have a direct role in the pathogenesis of renal injury, as a consequence of stimulating the sympathetic nervous system and the renin-angiotensin-aldosterone system (20). Dyslipidemia, which is a feature of the metabolic syndrome, may induce toxic and inflammatory tubulointerstitial injury (21). Finally, the metabolic syndrome is also associated with an elevated serum uric acid, which has also been implicated in renal disease (see below). The rise in metabolic syndrome indirectly may be a major contributor to the general rise in renal disease that has been observed throughout the world in the past few decades.

Uric Acid, Fructose Intake, and Metabolic Syndrome

In the past few years, there has been increasing evidence that hyperuricemia may be a true cardiovascular and renal risk factor (reviewed in reference [22]). Hyperuricemia predicts the development of hypertension (23), metabolic syndrome (23), diabetes (24), stroke (25), and cardiovascular events (25). Epidemiologic studies also have found that hyperuricemia is an independent risk factor for renal dysfunction in the normal population (26) and in patients with hypertension (27), diabetes (28), and CKD (29). Mild hyperuricemia in normal rats induces systemic hypertension, renal vasoconstriction, glomerular hypertension and hypertrophy, and tubulointerstitial injury inde-
correlates with the rising rates of metabolic syndrome. This is linked to the increased intake of fructose, which has increased markedly in the past few decades and is used in the United States as a sweetener. Intake of fructose is a major component in high-fructose corn syrup, and kidney disease (40). Fructose constitutes 50% of table sugar and leads to the hypothesis that fructose intake may be a novel mediator of the epidemic of renal disease. Future studies are planned to determine whether fructose intake may be increased in patients with progressive renal disease, particularly those with features of metabolic syndrome. The possibility that fructose intake may be increased in patients with progressive renal disease, particularly those with features of metabolic syndrome. The possibility that fructose intake may be a novel mediator of the epidemic of renal disease. Future studies are planned to determine whether fructose intake may be increased in patients with progressive renal disease, particularly those with features of metabolic syndrome.

Recently, uric acid also was found to have a causal role in the metabolic syndrome that was induced experimentally by fructose (38). Fructose rapidly raises uric acid as a consequence of activation of fructokinase with ATP consumption, intracellular phosphate depletion, and stimulation of AMP deaminase (39). Lowering uric acid in fructose-fed rats ameliorates much of the metabolic syndrome, including a reduction in BP, serum triglycerides, hyperinsulinemia, and weight gain (38). The rise in uric acid after fructose ingestion likely has a significant role in inducing insulin resistance via its effect to lower nitric oxide (35) and also possibly by a direct effect of uric acid on the adipocytes (Sautin et al., submitted).

In turn, fructose intake correlates well with the recent rise in the epidemic of metabolic syndrome, diabetes, hypertension, and kidney disease (40). Fructose constitutes 50% of table sugar and is used in the United States as a sweetener. Intake of fructose has increased markedly in the past few decades and correlates with the rising rates of metabolic syndrome. This leads to the hypothesis that fructose intake may be a novel mediator of the epidemic of renal disease. Future studies are planned to determine whether fructose intake may be increased in patients with progressive renal disease, particularly those with features of metabolic syndrome. The possibility that fructose intake may be increased in patients with progressive renal disease, particularly those with features of metabolic syndrome.

Acknowledgments

This study was supported by National Institutes of Health grants DK-52121, HL-68607, and HL-79332.

References

3. National Cholesterol Education Program: Third report of the National Cholesterol Education Program (NCEP) on Detection and Treatment of High Blood Cholesterol in

Table 1. Definition of metabolic syndrome by WHO, NCEP ATP III, and IDF

<table>
<thead>
<tr>
<th>WHO Definition (2)</th>
<th>NCEP ATP III Definition (3)</th>
<th>IDF Definition (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin resistance identified by type 2 diabetes or impaired fasting glucose or impaired glucose tolerance or insulin resistance (by insulin clamp) plus two or more of the following: BMI >30 kg/m² and/or waisthip ratio >0.9 (male) and >0.85 (female)</td>
<td>Metabolic syndrome is defined by three or more of the following risk factors: Waist circumference >88 cm (women) and >102 cm (men) Triglycerides ≧150 mg/dl HDL cholesterol <40 (male) and <50 (female) BP ≧140/90 mmHg Fasting glucose level ≧110 mg/dl</td>
<td>Central obesity (waist circumference, ethnicity specific) plus two or more of the following: Triglycerides ≧150 mg/dl or treatment for this abnormality HDL cholesterol <40 (male) and <50 (female) or specific treatment BP ≧130/85 mg/dl or pharmacologic treatment</td>
</tr>
<tr>
<td>Triglycerides ≧150 mg/dl BP ≧140/90 mmHg and/or antihypertensive drugs HDL cholesterol <35 (male) and <39 (female) Microalbuminuria (albumin excretion rate ≧20 μg/min) or albumin:creatinine ratio ≧30 mg/g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aIDF, International Diabetes Federation; NCEP ATP III, National Cholesterol Education Program Adult Treatment Panel III; WHO, World Health Organization.
35. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C,

