Serum Uric Acid: A Risk Factor and a Target for Treatment?

*Department of Pediatrics, Renal Section, Baylor College of Medicine, Houston, Texas; †Division of Nephrology, Faculdade de Ciencias Medicas, Universidade Estadual De Campinas, UNICAMP, Campinas-SP, Brazil; ‡Division of Nephrology, Ewha Women’s University College of Medicine, Ewha Medical Research Center, Seoul, Korea; §Division of Nephrology, University of Florida School of Medicine, Gainesville, Florida; and ||Departments of Nephrology and Medicine, University of Melbourne, Austin Hospital, Melbourne, Australia

Serum uric acid was first noted to be associated with increased BP by Frederick Mohamed in the 1870s. Although the link was rediscovered periodically over the years, it generally was dismissed as a surrogate marker for decreased renal function that led to increased uric acid and increased risk for hypertension and cardiovascular (CV) disease. Recently, however, several lines of evidence suggest that increased serum uric acid may be a significant modifiable risk factor. Increased serum uric acid is associated with increased risk for future hypertension in several large longitudinal clinical trials as well as an independent risk factor for poor CV prognosis. Animal model experiments demonstrate that increased serum uric acid causes increased BP that initially is reversible but becomes irreversible, salt sensitive, and uric acid independent over time. The mechanisms include the direct action of uric acid on smooth muscle and vascular endothelial cells. Finally, in adolescents with new-onset essential hypertension, the prevalence of elevated serum uric acid is >90%, and preliminary clinical trial evidence suggests that agents that lower serum uric acid may lower BP in this select population. Although the investigations are still preliminary, serum uric acid represents a possible new and intriguing target for the reduction of morbidity and mortality associated with hypertension and CV disease.

History of Uric Acid and Hypertension

The concept that uric acid may be involved in hypertension is not a new one. In fact, in the paper published in 1879 that originally described essential hypertension, Frederick Akbar Mohamed noted that many of his subjects came from gouty families. He hypothesized that uric acid might be integral to the development of essential hypertension (1). Ten years later, this hypothesis reemerged when Haig (2) proposed low-purine diets as a means to prevent hypertension and vascular disease. In 1909, the French academician Henri Huchard noted that renal arteriolosclerosis (the histologic lesion of hypertension) was observed in three groups: Those with gout, those with lead poisoning, and those who have a diet enriched with fatty meat. All of these groups are associated with hyperuricemia (3).

The association between elevated serum uric acid and hypertension was observed and reported repeatedly in the 1950s to 1980s but received relatively little sustained attention because of the lack of a mechanistic explanation (4–6). Twenty-five to 40% of adult patients with untreated hypertension have hyperuricemia (>6.5 mg/dl), and this number increases dramatically when serum uric acid in the high-normal range is included (7,8). In certain special cases of hypertension, such as cyclosporine-associated hypertension and pre-eclampsia, the correlation between elevated serum uric acid and hypertension is >70% (9). Despite these observations, the lack of a causal mechanism led to mild elevations of serum uric acid being largely ignored in medical practice. Uric acid was removed from routine laboratory panels, such as the serum metabolism and chemistries-20 (SMAC-20), in the early 1980s and is not considered a risk factor for hypertension by either the American Heart Association (10) or the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure (11).

Mild Hyperuricemia in the Rat, an Animal Model for Essential Hypertension

The study of mild hyperuricemia required an animal model before the lack of any mechanistic detail that had plagued the hypothesis over 100 yr could be addressed. The biggest challenge comes from the presence of the enzyme urate oxidase in all mammals except humans and the great apes. Consequently, normal serum uric acid levels in potential mammalian systems are in the 0.5- to 1.5-mg/dl range (humans typically have 3.5 to 7.0 mg/dl), and additional uric acid administered in the diet or intravenously is metabolized rapidly to allantoin without altering serum levels. The obvious solution would be a uricase knockout animal; however, such mice develop uric acid nephropathy and die of renal failure before 3 mo of age, limiting their utility for the study of chronic elevations of uric acid.

In the late 1990s, Johnson and colleagues (12) developed a model using a pharmacologic inhibitor of urate oxidase, oxonic acid, that allows the study of sustained mild hyperuricemia. When fed 2% oxonic acid in their standard diet, Sprague-
Dawley rats have an increase of mean serum uric acid concentrations from 0.5 to 1.4 g/dl to 1.7 to 3.0 mg/dl (12). During a 7-wk treatment period, systolic BP increases an average of 22 mmHg. The increase in BP can be prevented entirely by the co-administration of the xanthine oxidase inhibitor allopurinol or by the uricosuric agent benziodarone, indicating that the rise in uric acid is the cause of the increased BP. In fact, the increase in BP is linearly related to the rise in uric acid ($r = 0.77$). It is important to note that the change in BP is seen maximally when the rats are maintained on a low-salt diet and that there are no changes in renal function or measurable health parameters of the rats. After 7 wk on a low-salt diet and oxonic acid, if the oxonic acid is removed, then the serum uric acid falls to normal as does the BP over 3 wk; however, if formally hyperuricemic rats then are switched to a high-salt diet, then they become hypertensive (13). In short, mild hyperuricemia leads to an irreversible salt-sensitive hypertension over time.

Histologic evaluation of the renal tissue of the hyperuricemic, hypertensive rats reveals an expansion of the vascular smooth muscle and narrowing of the lumina of the afferent arterioles. This lesion, arteriolosclerosis, is the pathognomonic lesion associated with essential hypertension in humans. It is interesting that the development of arteriolosclerosis can be prevented using allopurinol to control uric acid levels; however, hydrochlorothiazide, which normalizes BP without lowering serum uric acid, does not prevent the development of arteriolosclerosis, indicating that uric acid, not hypertension, is the causative stimulus (14,15).

Several studies have elucidated the mechanisms by which increased serum uric acid leads to hypertension in the rat model. Direct staining of renal tissue for renin reveals that hyperuricemia causes an average of 62% of juxtaglomerular apparatuses to stain positive for renin, in comparison with <40% of controls ($P < 0.05$) (14). Histologic evaluation also reveals a dramatic increase in renal parenchymal infiltration with macrophage, suggesting that hyperuricemia confers a proinflammatory state on the kidneys of effected rats. Analysis of the serum of treated and control rats also reveals a 50% fall in total plasma nitrates during mild hyperuricemia (16,17). Taken together, these experimental results indicate that mild hyperuricemia induces renal inflammation, activation of the renin-angiotensin system, and downregulation of nitric oxide production, all of which are potentially important pathways that lead to uric acid–mediated hypertension.

Recent in vitro studies also have elucidated the possible mechanism of uric acid–mediated arteriolosclerosis. Primary human vascular smooth muscle cells (HVSMC) are induced to proliferate by addition of uric acid to the growth medium in a dose-dependent manner (18). The human smooth muscle cells express the urate-transport channel URAT1 as evidenced by both Northern and Western analyses. Consistent with this observation, cultured HVSMC rapidly take up 14C-urate, and blockade of this uptake by probenecid attenuates the uric acid–mediated induction of proliferation in a dose-dependent manner (19). Signaling studies have revealed further the possible mechanism by which urate uptake leads to HVSMC proliferation (13,18,20). This pathway is summarized in Figure 1.

Figure 1

VASCULAR SMOOTH MUSCLE CELL

- **Uric Acid**
- **URAT1**
- **AP1, NFκB**
- **Transcription Factors**
- **PDGF**
- **COX-2**
- **TXA2**
- **MCP-1**
- **Macrophage Infiltration**

Figure 1. The effect of uric acid on vascular smooth muscle cells (VSMC). Uric acid is taken up through the probenecid-sensitive urate-transport channel URAT1. This leads mitogen-activated protein kinase activation and extracellular signal–regulated kinase 1 and 2 (Erk 1/2) phosphorylation. In turn, transcription factors NF-κB and AP1 are activated leading to increased cyclooxygenase-2 (COX-2) expression and activity. The COX-2 product Thromboxane A2 mediates increased expression and elaboration of platelet derived growth factor (PDGF) and monocyte chemoattractant protein-1 (MCP-1), which induce VSMC proliferation and macrophage infiltration, respectively (13,18–20).

The Rat Revisited: Uric Acid and Progressive Renal Injury

Uric acid–mediated arteriolopathy and interstitial inflammation suggest mechanisms that would exacerbate or potentiate progressive renal functional decline after injury, also known as renal progression. Our collaborative groups have investigated the effect of uric acid on multiple mechanisms of progressive renal injury. Two representative systems are the remnant kidney model and the model of cyclosporine nephropathy. In the remnant kidney model, rats undergo unilateral nephrectomy and ligation of two of the three main branch renal arteries on the contralateral side. Hyperuricemic remnant kidney rats (caused by addition of 2% oxonic acid to their diets) had higher BP, greater proteinuria, and higher serum creatinine. Their histology revealed a 50% increase in glomerulosclerosis and a 30% increase in interstitial fibrosis compared with rats with remnant kidneys alone (21,22). Similar results were seen in the rat model of cyclosporine nephropathy. Addition of oxonic acid to cyclosporine treatment led to higher uric acid levels, more severe arteriolar hyalinosis, macrophage infiltration, and tubulointerstitial damage compared with rats that were treated with cyclosporine alone (23). Furthermore, treatment of cyclosporine-exposed rats with allopurinol improves GFR (23), and in human liver transplant patients who were receiving cyclosporine, treatment with allopurinol resulted in improved renal function (24).

Recent Epidemiology: A Change in Perspective

In the same period during which reports of animal models of mild hyperuricemia have been published, five new studies that reported that serum uric acid predicts the development of hypertension appeared in the literature. This is a significant departure from previous decades, in which there was considerable skepticism over a potential association between uric acid in high BP. Before 1990, only Khan et al. (25) had reported that an increased serum uric acid is an independent risk factor for hypertension; however, it had been noted that 25 to 40% of...
adults with hypertension have serum uric acid >6.5 mg/dl and
>60% have a serum uric acid >5.5 mg/dl (7,8) and that there
was a linear relationship between serum uric acid and systolic
BP in both white and black patients (26). Three reports that
indicated that serum uric acid is an independent risk factor for
hypertension were published in the 1990s (27–29), and five
more were published in the past 4 yr (30–34), including two in
the first month of 2005 (Table 1). The recent evaluation of a
subset of the Framingham Heart Study found that serum uric
acid level was an independent predictor of hypertension and
BP progression over as little as 4 yr.

Uric Acid and Essential Hypertension in Children

In adolescents, the association between elevated serum uric
acid and the onset of essential hypertension is even more
striking. The Moscow Children’s Hypertension Study found
hyperuricemia (>8.0 mg/dl) in 9.5% of children with normal
BP, 49% of children with borderline hypertension, and 73% of
children with moderate and severe hypertension (35). The Hun-
gerian Children’s Health Study followed all 17,624 children
who were born in Budapest in 1964 for 13 yr and found that
significant risk factors for the development of hypertension
were elevated heart rate, early sexual maturity, and hyperuri-
cemia (36). These two studies do not separate the hypertensive
children by underlying diagnosis, so the relationship between
serum uric acid and hypertension may be skewed by ascertainment
bias. In a small study, Gruskin (37) compared adolescents
(13 to 18 yr of age) who had essential hypertension with age-
matched healthy control subjects who had normal BP. The
hypertensive children had both elevated serum uric acid (mean
>6.5 mg/dl) and higher peripheral renin activity. In a racially
mixed population of patients who were referred for the evalua-
tion of hypertension, Feig and Johnson observed that the mean
serum uric acid level (± SD) in control subjects and children
with white coat hypertension were nearly identical (3.6 ± 0.8
and 3.6 ± 0.7 mg/dl, respectively; P = 0.80) but slightly higher
in secondary hypertension (4.3 ± 1.4 mg/dl; P = 0.008) and
significantly elevated in children with primary hypertension
(6.7 ± 1.3 mg/dl; P = 0.000004) (38). There was a tight, linear
correlation between the serum uric acid levels and the systolic
and diastolic BP in patients who were referred for evaluation of
hypertension (r = 0.8 for systolic BP and r = 0.6 for diastolic BP)
(38). Among patients who were referred for evaluation of hy-
pertension, a serum uric acid >5.5 mg/dl had an 89% positive
predictive value for essential hypertension, whereas a serum
uric acid level <5.0 had a negative predictive value for essential
hypertension of 96% (38).

Results from a very small, unblinded pilot study in children
suggested that uric acid may contribute directly to the onset of
hypertension in some humans. Five children, aged 14 to 17 yr of
age, with newly diagnosed and as yet untreated essential hy-
pertension were treated for 1 mo with allopurinol as a solitary
pharmacologic agent. All five children had a decrease in BP by
both casual and ambulatory monitoring, and four of the five
were normotensive at the end of 1 mo. All five also had a
rebound in their BP after discontinuation of the therapy (39).
Because this study was very small and not blinded, a great deal
of care should be taken in interpreting or generalizing the
results; however, they are intriguing. A blinded, randomized,
placebo-controlled, crossover trial is under way and nearing
completion and should shed greater light on the utility of uric
acid-lowering regimens in the management of new-onset hy-
pertension in children.

Uric Acid as a Potential Target of Therapy

The results from both animal and human studies strongly
implicate uric acid as a factor in the onset of essential hyper-
tension in some individuals and as a potential contributor to
the progression of renal injury. The animal model data also
present a mechanism by which uric acid leads to the renal
pathologic changes, afferent arteriolosclerosis, of essential hy-
pertension. If the arteriolosclerosis is irreversible and later hy-
pertension becomes uric acid independent, then this would
both explain why xanthine oxidase inhibitors and uricosurics
have not previously been noted to be useful antihypertensive

Table 1. Epidemiological studies that suggested that serum uric acid predicts hypertension

<table>
<thead>
<tr>
<th>Author</th>
<th>Year Published</th>
<th>Study Size</th>
<th>Duration of Follow-Up (yr)</th>
<th>Increased Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahn et al. (25)</td>
<td>1972</td>
<td>10,000 men</td>
<td>5</td>
<td>2-fold</td>
</tr>
<tr>
<td>Selby et al. (29)</td>
<td>1990</td>
<td>2062 adults</td>
<td>6</td>
<td>3-fold</td>
</tr>
<tr>
<td>Hunt et al. (28)</td>
<td>1991</td>
<td>1482 adults</td>
<td>7</td>
<td>2-fold</td>
</tr>
<tr>
<td>Jossa et al. (27)</td>
<td>1994</td>
<td>619 men</td>
<td>12</td>
<td>1.2-fold</td>
</tr>
<tr>
<td>Taniguchi et al. (30)</td>
<td>2001</td>
<td>6356 men</td>
<td>10</td>
<td>2-fold</td>
</tr>
<tr>
<td>Masuo et al. (31)</td>
<td>2003</td>
<td>433 men</td>
<td>5</td>
<td>+27 mmHg in systolic BP per each 1-mg/dl change in uric acid 1.6-fold</td>
</tr>
<tr>
<td>Nakanishi et al. (32)</td>
<td>2003</td>
<td>2310 men</td>
<td>6</td>
<td>1.5-fold in men</td>
</tr>
<tr>
<td>Nagahama et al. (40)</td>
<td>2004</td>
<td>4489 adults</td>
<td>23</td>
<td>1.9-fold in women</td>
</tr>
<tr>
<td>Alper et al. (33)</td>
<td>2005</td>
<td>577 children</td>
<td>11</td>
<td>Predicts diastolic hypertension</td>
</tr>
<tr>
<td>Sundstrom et al. (34)</td>
<td>2005</td>
<td>3119 adults</td>
<td>4</td>
<td>1.5-fold</td>
</tr>
</tbody>
</table>
agents and suggest their potential utility as first-line drugs for primary prevention of essential hypertension in selected populations. It is important, however, to interpret the results judiciously. We do not as yet have conclusive human clinical trial data to prove the utility of uric acid–lowering regimens as antihypertensive agents, hypertension prevention agents, or agents to attenuate progressive renal injury. Until and unless clinical trial data demonstrate these actions, the use of allopurinol or uricosuric agents for all asymptomatic hyperuricemic patients is not yet warranted. As the clinical trials are under way, the recommendations regarding the use clinical use of uric acid–lowering regimens may be modified in the near future.

Acknowledgements
This work was supported by NIH grants DK064587, DK071223, and RR17665 (D.I.F.).

References

