inappropriately high compared with plasma osmolality, but vasopressin levels are below the limits of RIA detection in a certain portion of the patients (as much as 10 to 20%). The existence of other antidiuretic substances in plasma has been postulated. Oxytocin may fit this profile nicely. A few studies have shown elevated levels of plasma oxytocin in patients with small-cell lung cancer; however, these increments were usually accompanied by concomitant increases in vasopressin. At present, no report has suggested that oxytocin alone produces SIADH in clinical cases, but this may be attributable to the lack of a reliable RIA for oxytocin in clinical settings. Related to this topic, the nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is caused by a gain-of-function mutation of V2R. In this disease, endogenous vasopressin is completely suppressed while antidiuresis persists. The symptoms of disease start from childhood, but similar mutations seem to explain some sporadic episodes of SIADH in adults.

How should we differentiate oxytocin-induced SIADH from NSIAD? Oxytocin-induced SIADH will respond to V2R antagonists as illustrated by Li et al., whereas patients with NSIAD are unable to respond to V2R antagonists. Clinicians would thus be well advised to note that oxytocin has antidiuretic activity and contributes to hyponatremia in certain clinical settings and that V2R antagonists may be useful in the differential diagnosis and treatment of inappropriate antidiuresis.

DISCLOSURES

None.

REFERENCES


Podocyte-Specific Gene Mutations Are Coming of Age

Peter W. Mathieson
Academic Renal Unit, University of Bristol, Bristol, United Kingdom

Major leaps have been made recently in the understanding of the cause of proteinuria and hence in the regulation of glomerular permeability in health. Progress has been fueled by the description of single-gene mutations, the majority of which affect genes expressed selectively in the podocyte, resulting in nephrotic syndrome in human and mouse. This has placed the podocyte center stage as a key regulator of normal selective permeability to albumin in the glomerular capillary wall, although we should not forget that single-gene mutations affecting components of the glomerular basement membrane can also result in heavy proteinuria, or that the third component of the glomerular capillary wall, the glomerular endothelial cell, can also play an important role in regulating glomerular permeability in health and disease.

The first podocyte-specific gene identified by studying disease-associated mutations was NPHS1, encoding nephrin; this was swiftly followed by identification of NPHS2, encoding podocin, also a novel protein important in the structure and function of...
glomeruli.6 Since the discovery of nephrin and podocin, several other disease-associated podocyte-specific gene defects have been reported, and, undoubtedly, there will be more to come.

Mutations in different podocyte genes or different mutations in the same gene result in varying phenotypes regarding severity and age of onset of proteinuria, and it is clear that there are likely to be other disease-modifying genes or environmental influences. Moreover, congenital forms of nephrotic syndrome are rare, and a question that intrigues nephrologists and basic scientists alike is whether the more common forms of sporadic, often later onset nephrotic syndrome could also be associated with mutations or polymorphisms in podocyte-specific genes, as predisposing factors or contributors to a complex etiology involving genetic–environmental interactions. If so, then study of these genes could be clinically useful in diagnosis and prognosis, especially concerning the likelihood of corticosteroid responsiveness and the issue of likely recurrence in renal transplants for patients who progress to end-stage renal failure.

The article in this issue of JASN by Hinkes et al.,7 the product of an impressive multinational collaboration, sheds light on these issues. The study amassed 430 patients with steroid-resistant nephrotic syndrome, the vast majority of whom were the only affected family member, although the series did include 23 families with more than one affected member. The patients were screened for mutations in NPHS2 by direct sequencing of all eight exons of the gene. Eighty-two patients (19% of the total) had mutations in NPHS2. In the families with more than one affected member, the proportion with NPHS2 mutations rose to 39%. In patients with two NPHS2 mutations, the authors report that approximately 40% had one truncating (frameshift or nonsense) mutation and an additional 30% had homozygous R1308Q mutations (the “founder” NPHS2 mutation identified by Boute et al.8). These two groups of individuals nearly all developed nephrotic syndrome at an early age (<6 yr, with a mean age of onset <2 yr). The remaining 30% of patients with other mutations or variants in NPHS2 had later onset disease without any further specific link between any given genotype and age of onset (although the numbers of patients with each genotype were small). Mutation type did not affect rate of deterioration, time from onset to ESRD being the same in all groups.

Although this represents real progress, even within the groups with early presentation there was still a wide range of age of onset. Also, >80% of the collection with steroid-responsive nephrotic syndrome did not have any abnormality of NPHS2, so their proteinuria remains unexplained; clearly there is more work to be done.

The power of large multinational studies such as this one will be essential if analyses of genotype–phenotype relationships in nephrotic syndrome are to yield informative conclusions. Ideally, genetic analysis should be more widely available as a diagnostic and prognostic aid in patients presenting with nephrotic syndrome; however, at present, clinicians will need further guidance from geneticists about the interpretation of genotype–phenotype relationships. Hinkes et al. are to be congratulated for leading the way.

DISCLOSURES
None.

REFERENCES


The Disadvantage of Being Fat

Roberto S. Kalil and Lawrence G. Hunsicker

Department of Medicine, Roy and Lucille Carver School of Medicine, Iowa City, Iowa

doi: 10.1681/ASN.2007121337

Given the epidemic of obesity in the United States, it is not surprising that an increasing fraction of patients who are considered for and receiving kidney transplants are also overweight. Friedman et al.9 found a 41.9% decrease in the fraction