Salt in the Wound

Nancy J. Brown

Division of Clinical Pharmacology, Department of Medicine, Vanderbilt School of Medicine, Nashville, Tennessee

doi: 10.1681/ASN.2008111185

Aldosterone activates the epithelial sodium channel (ENaC) in principal cells of the collecting duct to regulate salt excretion, extracellular volume, and BP. Seminal studies by Hostetter and colleagues demonstrated that aldosterone also contributes to glomerular sclerosis in a remnant kidney model. Treatment of rats with aldosterone and salt induces an inflammatory response, characterized by perivascular leukocyte infiltration and increased expression of proinflammatory genes through a MR-dependent mechanism. Not surprising, MR activation by aldosterone stimulates the expression of proinflammatory and profibrotic genes through MR-dependent activation of NF-κB in the cortical collecting duct.5 It would be interesting to know whether increased oxidative stress contributes to the MR-dependent activation of NF-κB in the cortical collecting duct during low salt intake.

Aldosterone or MR activation causes both tubulointerstitial fibrosis and glomerulosclerosis in animal models. Thus, the MR antagonists spironolactone and eplerenone decrease interstitial inflammation and glomerular injury in rats with radia-

Reprint and permission notices © The American Society of Nephrology 2009.
tion injury, unilateral ureteral obstruction, diabetes, and aldo-
sterone infusion.3,12 MR inhibition even reverses preexisting
glomerulosclerosis in a five-sixths nephrectomy model.13 The
to extent to which increased expression of NF-\(\kappa\)B-targeted genes
contribute to aldosterone-induced renal injury may be de-
duced from studies in genetically deficient mice. Obese (\textit{db/db})
mice genetically deficient in MCP-1 are protected against protein-
uria, inflammation, and glomerulosclerosis14,15; whether MCP-1
deficiency protects against aldosterone-induced renal injury \textit{per se}
has not been reported, but obesity is associated with increased
circulating aldosterone concentrations. PAI-1–deficient mice are
also protected from aldosterone/salt-induced glomerulosclero-
sis16; in contrast, PAI-1 deficiency does not protect against inter-
stitial inflammation in response to aldosterone and salt treatment.

What implications do these studies have for the treatment of
patients? Activation of the renin-angiotensin-aldosterone
system increases whereas MR antagonism decreases circulating
IL-6 and PAI-1 concentrations in humans.16 Whether MR ac-
tivation decreases renal cytokine or PAI-1 expression in hu-
man IL-6 and PAI-1 concentrations in humans.16 Whether MR ac-
tivation decreases renal cytokine or PAI-1 expression in hu-
man. Our understanding of the pathophysiologic role of aldoste-
rona has progressed during the past 15 yr, and the clinical use
of MR antagonists has seen resurgence. We often contrast the
proinflammatory/profibrictic effects of aldosterone in nonepi-
thelial cells to the classic physiologic role of aldosterone in
promoting epithelial sodium transport. The studies of Leroy \textit{et al.}
suggest that, in the kidney, these two effects are more inti-
mately linked than previously appreciated.

DISCLOSURES
None.

REFERENCES

1. Greene EL, Kren S, Hostetter TH: Role of aldosterone in the remnant
2. Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG: Aldo-
sterone/salt induces renal inflammation and fibrosis in hyperten-
161–167, 2008
4. Yuan J, Jia R, Bao Y: Aldosterone up-regulates production of plasmin-
ogen activator inhibitor-1 by renal mesangial cells. \textit{J Biochem Mol Biol}
\textbf{40}: 180–188, 2007
5. Leroy V, De Seigneur S, Agassiz V, Hasler U, Rafestin-Oblin ME, Vinciguerra M, Martin PY, Feraille E: Aldosterone activates NF-\(\kappa\)B in the
angiotensin II-induced signaling in vascular smooth muscle cells. \textit{Cir-
culation} \textbf{109}: 2792–2800, 2004
7. Terada Y, Kuwana H, Kobayashi T, Okado T, Suzuki N, Yoshimoto T, Hirata Y, Sasaki S: Aldosterone-stimulated SGK1 activity mediates profi-
8. de Seigneur S, Leroy V, Ghizi H, Rousselot M, Nielsen S, Rossier BC, Martin PY, Feraille E: NF-kappaB inhibits sodium transport via down-
regulation of SGK1 in renal collecting duct principal cells. \textit{J Biol Chem}
\textbf{283}: 25671–25681, 2008
9. Bens M, Chassin C, Vandewalle A: Regulation of NaCl transport in the
renal collecting duct: Lessons from cultured cells. \textit{Pflugers Arch} \textbf{453}:
133–146, 2006
10. Passero CJ, Mueller GM, Rondon-Berrios H, Tofovic SP, Hughey RP,
Kleymen TR: Plasmin activates epithelial Na+ channels by cleaving the
nephropathy in obese spontaneously hypertensive rats via paradoxical
activation of the mineralocorticoid receptor: Role of oxidative stress.
\textit{Hypertension} \textbf{50}: 877–883, 2007
13. Aldigier JC, Kankanibuch T, Ma LJ, Brown NJ, Fogo AB: Regression of
existing glomerulosclerosis by inhibition of aldosterone. \textit{J Am Soc Nephrol}
\textbf{16}: 3306–3314, 2005
14. Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH:
Monocyte chemotactrant protein-1 induced tissue inflammation is
critical for the development of renal injury but not type 2 diabetes in
obese \textit{db/db} mice. \textit{Diabetologia} \textbf{50}: 471–480, 2007
Plasminogen activator inhibitor-1 deficiency protects against aldoste-
16. Luther JM, Gainer JV, Murphey LJ, Yu C, Vaughan DE, Morrow JD, Brown NJ: Angiotensin II induces interleukin-6 in humans through a
mineralocorticoid receptor-dependent mechanism. \textit{Hypertension} \textbf{48}:
1050–1057, 2006
17. Takebayashi K, Matsumoto S, Aso Y, Inukai T: Aldosterone blockade
attenuates urinary monocyte chemoattractant protein-1 and oxidative
stress in patients with type 2 diabetes complicated by diabetic nep-
phropy. \textit{J Clin Endocrinol Metab} \textbf{91}: 2214–2217, 2006

See related article, “Aldosterone Activates NF-\(\kappa\)B in the Collecting Duct,” on
pages 131–144.

Unified Ultrasonographic Diagnostic Criteria for
Polycystic Kidney Disease

Franck A. Belibi and Charles L. Edelstein
Division of Renal Diseases and Hypertension, University of Colorado
Denver, Aurora, Colorado

Autosomal dominant polycystic kidney disease (ADPKD) is
the most common life-threatening hereditary disease in the

Published online ahead of print. Publication date available at www.jasn.org.

Correspondence: Dr. Charles L. Edelstein, University of Colorado Denver,
Division of Renal Diseases and Hypertension, Box C281, 12700 East 19th
Avenue, Aurora, CO 80045. Phone: 303-724-4810; Fax: 303-724-4868; E-mail:
charles.edelstein@ucdenver.edu

Copyright \textcopyright 2009 by the American Society of Nephrology