Glomerular Epithelial Stem Cells: The Good, The Bad, and The Ugly

Laura Lasagni* and Paola Romagnani*†

*Excellence Centre for Research, Transfer and High Education for the development of De Novo Therapies (DENOTHE), University of Florence, Florence, Italy; and †Pediatric Nephrology Unit, Meyer University Hospital, Florence, Italy

Global glomerulosclerosis in humans ac-
companies most progressive renal pathol-
y. Although mature podocytes are highly differ-
entiated and nondividing, converging evi-
dence from experimental and clinical data
suggests adult stem cells within Bowman’s
capsule can rescue some of this loss. Glom-
erular epithelial stem cells generate podocytes
during kidney growth and
regenerate podocytes after injury, thus explain-
ing why various glomerular
disorders undergo remission occasionally. This
regenerative process, however,
is often inadequate because of inefficient
proliferative responses by glomerular
epithelial stem cells with aging or in the setting of focal segmental glo-
merulosclerosis. Alternatively, an excessive proliferative response by glomerular ep-
ithelial stem cells after podocyte injury can generate new lesions such as
extracapillary crescentic glomerulonephritis, collapsing glomerulopathy and tip
lesions. Better understanding of the mechanisms that regulate growth and
differentiation of glomerular epithelial stem cells may provide new clues for
prevention and treatment of glomerulosclerosis.

Global glomerulosclerosis in humans ac-
companies most progressive renal pathol-
y. Although primary injury to each of the somatic cell types in the glo-
merular tuft associates with some form of glo-
merular disease, injury to endothelial
and mesangial cells repair by prolifera-
tion of adjacent cells.1,2 By contrast,
podocytes are highly differentiated, neu-
ron-like cells that cannot divide,1,2 which
explains why podocyte injury is a key
driver of focal or global glomeruloscle-
sis.3 Indeed, a large body of evidence
from experimental models suggests loss
of podocytes over a certain threshold in-
duces glomerulosclerosis.2–7 Podocyte
number is also reduced in proportion to
the severity of injury and degree of pro-
teinuria, and predicts progression in
patients with diabetic nephropathy,
IgA nephropathy, and focal segmental
glomerulosclerosis (FSGS).1,8–13 Fi-
nally, mutations that produce a glomer-
ulosclerosis occur exclusively among
genes expressed by the podocyte.14–16

Interestingly, depletion of highly spe-
cialized cells with limited capacity to di-
vide is a common pathway driving many
types of organ failure.17–20 In other adult
organs, loss of highly specialized cells
during injury can be replaced by resident
stem cells.21,22 For example, neuronal cell
depletion after ischemic injury generates
brain dysfunction, but neuronal stem
cells in the adult brain also drive replace-
ment of lost neurons with some func-
tional recovery.22 Accordingly, severe
podocyte loss and glomerulosclerosis

THE GOOD: GLOMERULAR
EPITHELIAL STEM CELLS
REGENERATE PODOCYTES

Stem cells are functionally defined by
their ability to self-renew and differenti-
ate into cell lineages reflecting their tissue
of origin.21 The ability to self-renew stem
cells is maintained by a process called
symmetric division, where new daughter
stem cells maintain all the functional and
phenotypic properties of stem cells.21 How-
ever, once activated, stem cells can also
regenerate by asymmetric division, pro-
ducing a daughter stem cell and a com-

Copyright © 2010 by the American Society of Nephrology
mitted progenitor.21 In their normal environment, committed progenitors retain the capacity to divide and differentiate toward a particular lineage.

Recently, we provided the first evidence that adult human glomeruli contain a hierarchical population of stem and committed progenitor cells.28–33 These resident stem and progenitor cells localize within the Bowman’s capsule and are identified by the presence of both CD24 and CD133, two surface molecules that are shared by different types of human adult stem cells.34,35 CD24+, CD133+ cells localize at the urinary pole of Bowman’s capsule and exhibit self-renewal properties and also the potential to differentiate into podocytes or proximal tubular cells (Figure 1).33 Clonal analyses demonstrate this subset of parietal epithelial cells represent multipotent epithelial stem cells and not simply a mixture of unipotent progenitors.33 This feature was demonstrated by first culturing progeny derived from single CD24+, CD133+ cells and then transplanting them into SCID mice with focal segmental glomerulosclerosis (FSGS).33

CD24+, CD133+ stem cells follow a phenotypical and functional hierarchy to generate a population of podocyte-committed progenitors between the urinary and the vascular pole of Bowman’s capsule, expressing both stem cells and podocyte markers (Figure 1). These progenitors differentiate only toward the podocyte lineage and lack the properties of self-renewal.33 Previous studies show the existence of transitional cells exhibiting a mixed phenotype between parietal epithelial cells and neo-podocytes in proximity of the vascular stalk of the glomerulus.36,37 Podocyte-committed progenitors proliferate and differentiate into cells that loose stem cell markers and acquire high levels of podocyte-specific markers as they progressively migrate toward the vascular stalk of the Bowman’s capsule (Figure 1).33 These findings in humans were also confirmed in parallel studies performed in rodents. Indeed, using genetic tagging of parietal epithelial cells, Appel et al.38 demonstrated that such cells proliferate and differentiate along the urinary space and move to the vascular stalk generating neo-podocytes (Figure 1).38 Genetic labeling also supports the notion that this parietal epithelial cell population regenerates itself.38 Thus, parietal epithelial cells have the ability not only to generate differentiated podocytes but also to self-renew, which further demonstrates they represent stem cells. A continuous generation of novel podocytes occurs as the kidney grows,38 and might also occur during enlargement of a contralateral kidney after uninephrectomy.

However, in glomerular disorders characterized by acute or severe podocyte loss, regeneration may require other pathways that allow faster replacement of injured podocytes. Indeed, the possibility that parietal epithelial cells also migrate from Bowman’s capsule to the capillary tuft in regions different than the vascular pole is suggested by adhesions and also bridges representing new migratory tracks between Bowman’s capsule and the glomerular tuft (Figure 1).25,39 Interestingly, a recent study using genetic tagging of parietal epithelial cells demonstrates that bridges between Bowman’s capsule and the glomerular tuft in experimental models of glomerular disorders are exclusively generated by parietal epithelial cells.40 These bridges provide a pathway for the migration and differentiation of glomerular epithelial stem cells to regenerate lost podocytes.
tion of an adjacent progenitor and a quick replacement of lost podocytes (Figure 1B), or alternatively, bridging parietal epithelial cells may acquire podocyte markers after injury and directly replace lost podocytes (Figure 1C). Accordingly, generation of bridges by parietal epithelial cells to replace lost podocytes has also been recently reported using in vivo multiphoton microscopy in rat models of PAN nephritis. In summary, a large body of evidence indicates the Bowman’s capsule of adult kidneys contains a population of glomerular epithelial stem cells, which replace lost podocytes through multiple mechanisms of glomerular regeneration.

THE BAD: LIMITS AND DEFAULTS IN THE REGENERATIVE POTENTIAL OF GLOMERULAR EPITHELIAL STEM CELLS

Several studies indicate, as already reported for other types of adult stem cells, that the regenerative capacity of glomerular epithelial stem cells has limits. Wiggins and co-workers find that repair of podocytes occurs when <20% of podocytes are lost; 20 to 40% podocyte loss results in a scarring response and >60% podocyte loss produces globally sclerotic and nonfiltering glomeruli. The amount of podocyte injury seems greatly influenced by the regenerative capacity of glomerular epithelial stem cells, and glomerulosclerosis leading to ESRD may occur in those glomerular disorders where the amount of podocyte injury exceeds the possibility of regeneration (Figure 2).

In addition, glomerular epithelial stem cells display a different regenerative potential at distinct stages of life, exhibiting the highest regenerative potential through adolescence, which might explain why glomerular disorders have a better prognosis during childhood whereas FSGS is more frequent at an older age (Figure 2).

This observation also provides a possible explanation for the progressive increase in prevalence of global glomerulosclerosis with aging, which may be related to an exhaustion of the self-renewal potential of glomerular epithelial stem cells. Indeed, reduced potential for self-renewal with aging is described in other adult stem cells. Accumulated DNA damage and loss of DNA repair may be one of the mechanisms underlying age-dependent stem cell decline. However, the most important modulator of the regenerative potential of stem cells is likely to be the surrounding environment. After birth, adult stem cells reside in a specialized microenvironment called a “niche,” which regulates the delicate balance between self-renewal and differentiation.

The localization of glomerular epithelial stem cells at the urinary pole of the Bowman’s capsule suggests that the adult glomerulus contains such a stem cell niche. This hypothesis is supported by the observation that embryonic stem cells, after commitment toward renal lineages, migrate to the urinary pole of Bowman’s capsule after injection into developing kidneys—a selective property of stem cell niches. Previous studies also demonstrate that factors present in young niche environments restore proliferative and regenerative capacity of aged stem cells in the niches of other adult tissues.

Accordingly, very recent data finds that the regenerative potential of glomerular epithelial stem cells is enhanced or inhibited by different culture conditions. More importantly, injection of glomerular epithelial stem cells under the contralateral kidney capsule of unilaterally nephrectomized mice generate novel renal tissue, including neo-glomerular and tubular structures, a finding that is not observed after injection under the capsule of normal kidneys. This latter finding suggests the regenerative potential of glomerular epithelial stem cells is strictly dependent on the surrounding environment and the underlying process of kidney growth generates favorable conditions for regeneration. Although a recent study describes the phenotype of glomerular epithelial
stem cells, we still have little information about which other cells support their growth and differentiation and what paracrine factors maintain their function and number. Thus, further experiments are necessary to pinpoint this relationship and how it changes during progressive glomerulosclerosis or aging.

THE UGLY: DYSREGULATED GLOMERULAR EPITHELIAL STEM CELLS CREATE THEIR OWN LESIONS

It is widely recognized that disruption in the regulated balance between self-renewal and differentiation of stem cells not only impairs regenerative mechanisms but also can even create new problems. For example, myeloproliferative diseases arise as a result of aberrant proliferation of hematopoietic stem cells, whereas a number of hematopoietic stem cells are reduced in aplastic anemia, resulting in fatty replacement of bone marrow with pancytopenia. These stem cells–related disorders are generated by intrinsic genetic alterations or by alterations of the surrounding environment.

In the glomerulus, the response to podocyte injury may cause aberrant epithelial cell proliferation, the formation of hypercellular lesions, and the obliteration of Bowman’s space, as seen in collapsing glomerulopathy or crescentic glomerulonephritis. Until now, theories explaining the origin of aberrant epithelial cells in collapsing glomerulopathy and crescentic glomerulonephritis have been controversial. One possibility is that these cells are exclusively of parietal epithelial origin, whereas others suggest some dedifferentiated podocytes acquire markers of parietal epithelial cells.

After the identification of a population of glomerular epithelial stem cells along Bowman’s capsule that generate new podocytes, we have explored the possibility that hyperplastic epithelial cells in crescentic glomerulonephritis or collapsing glomerulopathy might result from an aberrant proliferative response of these stem cells. This would easily explain the presence in these lesions of cells with an intermediate phenotype between parietal epithelial cells and podocytes. Accordingly, the majority of cells present in the hyperplastic lesions of patients with collapsing glomerulopathy or crescentic glomerulonephritis exhibit the glomerular epithelial stem cell markers, CD133 and CD24, with or without co-expression of podocyte markers. Therefore, we suggest that glomerular hyperplastic lesions are generated by stem/renal progenitor cells from Bowman’s capsule at different stages of differentiation toward mature podocytes (Figure 3A).

Additional confirmation of this hypothesis comes from lineage-tracing experiments performed in transgenic mice with genetically labeled parietal epithelial cells in the nephrotoxic crescent model of crescentic glomerulonephritis and also the Thy-1.1 transgenic mouse model of collapsing glomerulopathy. In both models, genetically labeled parietal epithelia constitute the majority of cells that compose early extracapillary proliferative lesions and almost all of the proliferating cells. Interestingly, et al. suggest the development of the crescent is initiated by cell bridges that are formed between the tuft and Bowman’s capsule. Because lineage-tracing experiments demonstrate that bridging between the Bowman’s capsule and the tuft are generated by parietal epithelial cells, we hypothesize that after massive

![Figure 3. The ugly: Dysregulated glomerular epithelial stem cells create their own lesions.](image-url)
podocyte injury, glomerular epithelial stem cells generate cell bridges with the glomerular tuft in several areas of the glomerulus to quickly replace lost podocytes (Figure 3A).

Numerous areas of podocyte injury along with glomerular epithelial stem cells proliferation heavily distort glomerular architecture, thus altering the polarity of stem cells division. Polarized proliferation is a critical determinant of correct stem cell differentiation,48–52 and this might explain why disruption in the polarity of glomerular epithelial stem cells initiates abnormal proliferation and the development of hyperplastic glomerular lesions impairing recovery (Figure 3A). Interestingly, both crescentic glomerulonephritis and collapsing glomerulopathy are characterized by death of numerous podocytes over a short time interval and by an aberrant proliferation of glomerular epithelial stem cells, which suggests they might not be pathogenetically distinct but rather two faces of the same disorder.72 That is, crescentic glomerulonephritis presents with podocyte damage in an inflammatory environment characterized by nephritic features, whereas collapsing glomerulopathy often presents with nephrotic features.52,63,72,73

Although epithelial cell proliferation is most characteristic and prominent in crescentic glomerulonephritis or collapsing glomerulopathy, some epithelial cell proliferation is also observed in histopathologic lesions typically found in other podocytopathies, such as the tip lesion.62 Interestingly, we recently demonstrated that in the tip lesion, as well as in those FSGS which are characterized by mild levels of hyperplasia, glomerular epithelial stem cells are the main constituents of the proliferative lesion.70 This raises the question of how distinct pathogenic factors initiate abnormal regenerative processes.

FSGS is induced after a 40 to 60% podocyte loss.1,3 However, in the face of massive podocyte injury in this disorder, hyperplastic glomerular lesions generated by glomerular epithelial stem cells are usually mild.61 This suggests that FSGS might be the consequence of insufficient proliferation of glomerular epithelial stem cells, which impairs the correct replacement of injured podocytes and defaults to alternative replacement with extracellular matrix (Figure 2).70 Interestingly, when glomerular epithelial stem cells are exposed to TGF-β secreted by podocytes exposed to proteinuria,74 they also produce and deposit higher amounts of extracellular matrix.70 In addition, the regenerative potential of glomerular epithelial stem cells is reduced in aging.38 when FSGS is more frequent (Figure 2).1,61

Other reasons underlying the different response of glomerular epithelial stem cells to massive podocyte injury in various glomerulonephritides are currently unknown, but might be related to the type of injury or to the different genetic backgrounds of patients. Accordingly, a recent study demonstrates that podocyte damage leads to glomerular injury with a complete histologic pattern of collapsing glomerulopathy related to high parietal epithelial cell proliferation in mice with null alleles for the cell cycle inhibitor, p21, compared with segmental lesions and mild intraglomerular proliferation in wild-type mice.75

Finally, glomerular epithelial stem cells are also the main constituents of the tip lesion.70 Interestingly, the tip lesion is described in several proteinuric conditions, including FSGS, membranous nephropathy,76 postinfectious glomerulonephritis,77 and diabetic nephropathy.78 Because replacement of podocytes under physiologic conditions follows a gradient, with neo-podocytes progressively added from the vascular stalk, the tip podocytes likely represent the “oldest” podocytes in the glomerular tuft, as already suggested.38 This should make the tip podocytes more susceptible to injury and thus suggests they might be the first to die in response to heavy proteinuria (Figure 3B). On this basis, Haas and Yousefzadeh79 argue that the tip lesion is a response to prolonged heavy proteinuria.

Consistently, experimental evidence in in vitro and in vivo models of disease documents that exposure of podocytes to excessive amounts of plasma proteins promotes podocyte dysfunction and injury followed by tuft adhesion and sclerosis.75,80 Thus, glomerular epithelial stem cells may proliferate and migrate from the urinary pole of the Bowman’s capsule toward the tuft in an attempt to replace the podocytes lost in response to heavy proteinuria, generating the tip lesion (Figure 3B). Taken together, the results of these recent studies suggest the clinicopathologic features of different glomerular disorders more likely represent distinct patterns of injury or repair rather than diseases.

CONCLUSIONS

Podocyte loss is a central determinant of progression to glomerulosclerosis.1,3–16 Podocytes cannot divide,1,2 but regression of glomerulosclerosis is possible, as indicated by experimental models and also clinical evidence.24–28 The discovery that a population of glomerular epithelial stem cells represent a potential source for podocyte regeneration establishes an entirely novel view that changes the way we think of normal renal cell biology or pathophysiology (Figure 1).29–33,38,39 Indeed, the first main outcome of the discovery of glomerular epithelial stem cells is that regeneration or the promotion of functional repair after glomerular injury, and even prevention or treatment of glomerulosclerosis, may be possible. However, this regenerative process is sometimes inadequate because of an inefficient proliferative response by glomerular epithelial stem cells, as it may occur in aging patients or after FSGS (Figure 2).40,70

In addition, in some situations, an excessive proliferative response by glomerular epithelial stem cells will initiate new lesions, such as crescentic glomerulonephritis or collapsing glomerulopathy (Figure 3).30,70 Thus, converging evidence indicates the type of pathologic or clinic presentation, or even the outcome of glomerular disorders, may depend on the balance between injury1–16 and regeneration provided by glomerular epithelial stem cells.29–33,38–40,70 Accord
ingly, very recent results suggest that a Notch-regulated balance between podocyte loss and regeneration provided by renal progenitors influences the outcome of glomerular injury in adriamycin nephropathy.81 Factors influencing the outcome of the regenerative process may also be the type, extension, or locali-

zation of podocyte injury, the age of pa-

tients, or patients genetic background. Understanding of how self-renewal and fate decisions of glomerular epithelial stem cells are perturbed or modulated will be of crucial importance in obtaining novel tools for the prevention and treat-

ment of glomerulosclerosis.

ACKNOWLEDGMENTS

The research leading to these results has re-

ceived funding from the European Com-

munity under the European Community’s Seventh Framework Programme (FP7/2007-

2013), grant 223007, and from the European Research Council Starting Grant under the European Community’s Seventh Framework Programme (FP7/2007-2013), ERC grant 205027. The Tuscany Ministry of Health and the Associazione Italiana per la Ricerca sul Cancro supported this study.

DISCLOSURES

None.

REFERENCES

1. Wiggins RC: The spectrum of podocytopa-

thies: A unifying view of glomerular dis-

419, 2005

sclerosis: Diphertheria toxin-induced podo-

5. Kretzler M: Role of podocytes in focal scle-

sis have a direct relationship in the PANTreated rat. Kidney Int 60: 957–968, 2001

8. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Renkke HG, Coplon NS, Sun L, Meyer TW: Podocyte loss and progressive glomerular injury in type II dia-

9. Meyer TW, Bennett PH, Nelson RG: Podo-
cyte number predicts long-term urinary al-

bumin excretion in Pima Indians with type II diabetes and microalbuminuria. Diabetology 42: 1341–1344, 1999

10. Steffes MW, Schmidt D, McCrery R, Basgen JM: International Diabetic Nephropathy Study Group: Glomerular cell number in nor-

116: 2830–2832, 2005

12. Dalla Vestra M, Masiero A, Roiter AM, Saller M, Kretzler M: Role of podocytes in focal scle-

13. Barisoni L, Schnaper HW, Kopp JB: Ad-

vances in the biology and genetics of the podocytopathies: Implications for diagnosis and therapy. Arch Pathol Lab Med 133: 201–

216, 2009

14. Barisoni L, Schnaper HW, Kopp JB: A pro-

posed taxonomy for the podocytopathies: A reassessment of the primary nephrotic dis-

16. Dickson DW: Apoptotic mechanisms in Alz-

heimer neurofibrillary degeneration: Cause or effect? J Clin Investig 114: 23–27, 2004

18. Heinsen H, Strik M, Buer M, Luther K, Ul-

mgar L, Gotz M: Cortical and striatal neure-

19. Lev S: Molecular aspects of retinal degener-

589, 2001

20. Minoda R, Izumikawa M, Kawamoto K, Ra-

phael Y: Strategies for replacing lost co-

chlear hair cells. Neuroreport 15: 1089–

1092, 2004

23. Remuzzi G, Benigni A, Remuzzi G: Mecha-

nisms of progression and regression of renal lesions of chronic nephropathies and diabe-

24. Macconi D, Sangalli B, Conti S, Condorelli L, Gagliardini E, Remuzzi G, Re-

807, 2009

garetti L, Remuzzi A, Remuzzi G, Benigni A: Unlike each drug alone, lisinopril if com-

F1456, 2009

26. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M: Reversal of lesions of diabetic nephropathy after pancreas trans-

27. Ruggenenti P, Penna A, Benini R, Bertani T, Zoccali C, Maggiore S, Salvadori M, Re-

muzzi G: In chronic nephropathies prolonged ACE inhibition can induce remission: Dynamics of time-dependent changes in GFR. Investigators of the GISEN Group. Gruppo Italiano Studi Epidemiologici in Ne-

cini F, Maggi E, Annunziato F, Lasagni L, Serio M, Romagnani S, Romagnani P: Isola-

tion and characterization of multipotent pro-

29. Romagnani P: Toward the identification of a "renopoietic system"? Stem Cells 27: 2247–

2253, 2009

30. Lazzeri E, Crescioli C, Ronconi C, Mazzinghi B, Sagrini C, Netti GS, Angelotti ML, Par-

ente E, Balerini L, Cosmi L, Maggi L, Gesu-

31. Mazzinghi B, Ronconi E, Lazzeri E, Sagrini C, Balerini L, Angelotti ML, Parente E, Man-

New Insights into Glomerular Epithelial Stem Cells 1617