
brane and/or transition fiber regulation might be detrimen-
tal for ciliogenesis and correct positioning, resulting in the
observed phenotype of the double mutants. Many key ques-
tions remain unanswered. Even though MKS1 and MKS3
physically interact, it is unclear how they act to regulate
ciliogenesis, cilia length control, or cilia number. In mam-
mals, MKS3 function regulates the number of cilia on the
apical membrane in kidney tissues in vivo and in vitro, and
loss of MKS3 results in an increased number of cilia. The
authors of this study do not comment on cilia numbers,
which may reflect a difference between a mammalian and
nematode role of MKS3. Along this line, MKS3 might play
additional roles in mammals versus nematodes, on the basis
of its differential localization. Elucidating the function of
MKS3 will also require investigating its potential genetic
interaction with other ciliopathy genes, which would give
important insights into the understanding of the pathogen-
esis of the cystic phenotype.

Several reports recently provided data indicating that phe-
notypic severity among MKS and NPHP is a consequence of
mutational load, meaning that MKS and NPHP lie within a
phenotypic continuum rather than represent multiple distinct
clinical entities and that the sum of mutations in ciliary genes
define the severity of the phenotype. Further studies of MKS3
in conjunction with other ciliary proteins are now required to
unravel how different mutational loads can lead to the clinical
variability observed in patients with MKS as well as other cil-
iopathies and identify further, second-site modifiers.

This study by Williams et al.12 offers a deeper understanding of
the importance of mutational load on the presentation and sever-
ity of ciliopathies and expands the understanding of the synergis-
tic interactions between ciliopathy genes. Further analysis will
hopefully allow targeted therapies to alleviate the morbidity
and mortality associated with these devastating diseases.
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Abraham Trembley discovered hydras swimming in a stream near
The Hague in 1740. By dissecting and watching them regenerate
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under the microscope, he described one of the most remarkable
phenomena in biology.1–4 Regeneration is a trait seen in most
major branches of the animal kingdom, including urodeles and
fish, although many higher species, such as humans, have only
limited capacity. Some suggest the ability to regenerate tissue fully
attenuates during evolution, when advanced complexity, requir-
ing the management of vast numbers of cell lineages, integratively
forms and maintains a stable body plan.1–4 In the kidney, for ex-
ample, the emergence of numerous populations of specialized re-
nal epithelial cells along a segmented nephron likely represents
this advanced complexity.5

The loss of full regenerative capacity is evidently the price
we pay for achieving a functional complexity typical of higher
vertebrates. Some of this regenerative competency, however, is
preserved in specific lineages of cells that can be recalled to
maintain tissue integrity.6 –9 Cells deputed to regeneration are
indeed observed in all mature organs and are named stem cells
because of the variety of cells that can stem from their lineage.
Stem cells of all multicellular organisms share two universal
properties: They self-renew and generate the progeny of differ-
entiated cells.1– 4 Accordingly, comparative genomics unravels
the molecular and functional similarities of stem cell biology
not only within the animal kingdom but also across king-
doms.1– 4 Although the blueprint is far from complete, it is
obvious that stem cell systems at the base of metazoan evolu-
tion are important in identifying basic mechanisms of stem cell
biology in mammals and, more important, in humans.

In this issue of JASN, de Groh et al.10 advance on lessons
from zebrafish to learn how to modulate the regenerative po-
tential of kidney tissue. The authors designed a library of small
molecules and screened them for effects on renal regenerative
capacity.10 The zebrafish is an ideal genetic and developmental
model for dissecting the molecular mechanisms of renal pro-
genitor cell function because of the anatomic simplicity of its
nephrons compared to the multitudes of nephrons in a mam-
malian kidney.11 From a functional standpoint, these fish
nephrons consist of a blood-filtering renal corpuscle, proximal
and distal tubular regions, and the pronephric duct.11 During
zebrafish development, bilateral strips of intermediate meso-
derm lying on either side of the trunk undergo a mesenchymal-
to-epithelial transition to form the pair of pronephric
nephrons. The anteriormost renal progenitors differentiate
into podocytes, which migrate medially and fuse at the midline
to form a single renal corpuscle. The nephrons also fuse poste-
riorly at the cloaca to form a shared exitway. In the study by de
Groh et al., treating zebrafish embryos with a novel chemical
compound, 4-(phenylthio)butanoic acid, induced prolifera-
tion of renal progenitor cells, an effect related to its ability to
act as a histone deacetylase (HDAC) inhibitor.10

In eukaryotic cells, DNA is wrapped around core histones to
form nucleosomes that fold into higher order chromatin. Modi-
fication of histone N-terminal tails through acetylation or
deacetylation alters the interaction between histones and DNA.
HDAC inhibitors regulate the transcription of cell type–specific
genes by modulating this accessibility to chromatin12 as well as the

extensive self-renewal of mouse and human embryonic stem
cells.13 Previous studies also described a role for HDAC inhibitors
in the maintenance of balance between self-renewal and differen-
tiation in other adult stem cell systems.12 Given their effects on
stem or progenitor systems, HDAC inhibitors are possible phar-
macologic modulators of regeneration.12,13

The study of de Groh et al.10 suggests these considerations might
also extend to the kidney. The recent description of renal stem cells in
adulthumankidney3,6–9,14 andtheir strictphenotypicandfunctional
similarity with embryonic renal stem or progenitor cells further sup-
port this possibility.3 Interestingly, very recent studies also reported
that treatment with HDAC inhibitors reduces epithelial-to-mesen-
chymal transition15 and fibrosis in obstructive nephropathy,16 regu-
lates bone morphogenic protein 7 in the regenerative response to
ischemia,17 and prevents the progression of accelerated nephrotoxic
serum nephritis toward glomerulosclerosis.18

The central role of stem or progenitor cells in maintaining
the integrity and functionality of organ tissues also suggests
their manipulation might engender adverse effects.12 Indeed,
zebrafish larvae treated with HDAC inhibitors develop ede-
ma,10 which suggests that deregulated expansion of renal pro-
genitor cells can disrupt organ regeneration or function. These
expanded progenitor populations, in fact, fail to migrate me-
dially and fuse at the midline to form a glomerulus, an effect
that seems related to the lack of terminal differentiation toward
the podocyte phenotype.10

Taken together, these results advance a novel concept—
that manipulating kidney regeneration is possible— but
may also be harmful without deeper knowledge of the di-
verse properties of renal progenitor cells unleashed. Thus,
understanding the mechanisms and devising improved ap-
proaches to control cell fate and function in vitro and in vivo
are crucial for translating stem cells and their modulators
into the clinic.

Chemical compounds that modulate site-specific targets
that control signaling pathways or epigenetic events19 may rep-
resent useful tools for manipulating cell fate and offer some
advantage over genetic manipulation. For example, in contrast
to genetic manipulation, the effects of chemical compounds
are typically fast and reversible, providing more precise tem-
poral and context-dependent regulation of protein func-
tion.12,20 These effects can also be finely tuned by varying the
concentration or combination of drugs of interest. In addition,
the wide structural and functional diversity endowed by syn-
thetic chemistry potentially will let us target specific molecular
interactions or cellular functions more precisely.12,20

Stem cells offer significant promise for developing treat-
ments for many human diseases or injuries. The challenge
faced currently by regeneration science is to identify ways to
instruct stem cells and their progeny to undergo proper devel-
opment, including migration to the site of damage, differenti-
ation into specific cell types, establishing correct anatomic
connections and physiologic functions, and surviving long
term. Now, the challenge has also started for the kidney: It is
time for regenerative nephrology.
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Health insurance, setting of care, geography, and primary dis-
ease all affect mortality among various populations in the
United States.1,2 If medical care for these different populations
were truly comparable, then we might expect similar mortality
outcomes and attribute differences to random variation. Un-
fortunately, population-to-population variations in mortality
are frequently observed and persist even after controlling for
individual patient characteristics. This suggests potentially re-
mediable differences in the content, organization, and delivery
of health care may be important in shaping true variation.3– 6

Such modifiable differences in health care–related mortality, if
they exist, warrant special attention as clinical and public
health problems.
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