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The term high altitude is used to define
living at an altitude exceeding 2400 m
above sea level. Using this definition,
�140 million people in the world cur-
rently live at high altitude, representing
2% of the world’s population.1 There are
several major regions in the world that
are situated at high altitude. The Ethio-
pian summits in northeast Africa consist
of mountains that reach an altitude be-
tween 4600 and 4900 m above sea level.
Known as the Roof of Africa, this region is
inhabited by the Amhara ethnic group.
The Himalayan Mountains in Asia are
the highest range of mountains in the
world, inhabited by the Sherpa in the Ne-
pali region, as well as a variety of other
ethnic groups elsewhere. The Andean
region of South America constitutes a
third major high altitude region, pri-
marily inhabited by two different eth-
nic groups: the Quechua and Aymara.
These peoples have been involved in a

continuous process of racial mixing
with the Spanish.

HUMAN ORIGINS AND THE POPU-
LATING OF HIGH ALTITUDE RE-
GIONS

Modern humans (Homo sapiens) have
their origin in Africa.2 The earliest fossils of
H. sapiens date to 200,000 years ago and
were found in Ethiopia (Kibish man).3

Studies of mitochondrial DNA, which is
only inherited maternally,4 also place the
origin of humans to this same period.5 Ge-
netic studies of different African popula-
tions suggest an origin in southwestern Af-
rica near the Angola and Namibia border,
possibly from an ancestor of the hunter
gatherer San (Bushmen) people.6 Around
70,000 years ago, humans moved into the
East African plateau of Ethiopia (2400 m)
to become the first population living at

high altitude.7 Roughly at the same time
(50,000 to 90,000 years ago), humans be-
gan migrating out of Africa to Asia and Eu-
rope.8 Even later (approximately 15,000 to
22,000 years ago), the first migrations to
the Americas occurred, likely over the Ber-
ing land bridge (Beringia), which in the
past had connected Asia and Alaska.9,10 Ge-
netic studies based on mitochondrial
haplotypes suggested these early peoples
represented ancestral Mongolians11,12 or
perhaps the Altaian people from southern
Siberia.13 By 13,500 to 15,000 years ago, the
first humans entered South America, with
one of the earliest documented sites being
in Monte Verde, Chile.14

GENETIC ADAPTATIONS TO HIGH
ALTITUDE

People living in the Ethiopian highlands,
Tibet, and the Andes descend from set-
tlers who arrived to these high altitude
regions 70,000, 25,000, and 11,000 years
ago, respectively.15 Numerous differences
in responses to high altitude have been de-
scribed in three populations living at these
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ABSTRACT
More than 140 million people live permanently at high altitude (�2400 m) under
hypoxic conditions that challenge basic physiology. Here we present a short
historical review of the populating of these regions and of evidence for genetic
adaptations and environmental factors (such as exposure to cobalt) that may
influence the phenotypic responses. We also review some of the common renal
physiologic responses focusing on clinical manifestations. The frequent presenta-
tion of systemic hypertension and microalbuminuria with relatively preserved GFR
coupled with the presence of polycythemia and hyperuricemia suggests a new
clinical syndrome we term high altitude renal syndrome (HARS). ACE inhibitors
appear effective at reducing proteinuria and lowering hemoglobin levels in these
patients.
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altitudes (Table 1).15 A classic hypothesis is
that Tibetan inhabitants have a better ad-
aptation to altitude than Andeans because
of their longer exposure to high altitude,
which allowed genetic modifications to de-
velop.15,16 Although not as well studied as
these groups, Amharic highlanders may be
even better adapted because of their longer
time residence in the mountains. The bet-
ter adaptations of the Tibetans and Am-
hara to altitude is suggested by the follow-
ing observations:

Increase in Hemoglobin in
Response to Hypoxia
Among the Andean populations, the hy-
poxia-related increase in hemoglobin is
seen starting at an altitude of 1600 m
above sea level. In contrast, among the
Tibetan populations, who have resided at
high altitude for a longer period of time,
the increase of hemoglobin as a response
to hypoxia is seen only in those living
�4000 m above sea level.16 In this regard,
the Ethiopian Amharic population he-
moglobin distribution is equivalent to
the Tibetans.17 One potential explana-
tion for this discrepancy may relate to ge-
netic polymorphisms in EPAS1, the gene
coding for hypoxia inducible factor-2
(HIF-2), a known modulator of erythro-
poietin levels.18 In comparison to the
closely related but lower altitude dwell-
ing Han Chinese population, Tibetans
have polymorphisms in EPAS1 that are
associated with lower hemoglobin levels,
suggesting a selection advantage of Ti-
betans to help protect high altitude
dwellers against the development of se-
vere erythrocytosis.19,20 To our knowl-
edge, studies of EPAS-1 polymorphisms
in the Andean and Amharic populations
have not been reported.

Prevalence of Chronic Mountain
Sickness
Chronic mountain sickness (CMS) or
Monge’s disease results from the devel-
opment of severe erythrocytosis and oc-
curs in some people who live perma-
nently at high altitude. It presents with
symptoms such as headache, dyspnea,
fatigue, palpitations, cyanosis, sleeping
problems, and polycythemia (hemato-
crit � 65%). Studies performed in ethnic

Tibetans report a CMS prevalence of
1.2%, whereas the Han ethnic group,
who have resided in Tibet for a shorter
period of time, have a CMS prevalence of
5.5%.21 This suggests better genetic adap-
tation of the Tibetan ethnic group.19–22 In
contrast, research performed in Andean
populations show a CMS prevalence of
8.5 to 15.6%.23,24 With respect to the Am-
hara, whose residence at high altitude has
been the longest, there have been no re-
ported cases of CMS. Although some evi-
dence for genetic adaptation of Andeans
has been identified, particularly as it relates
to polymorphisms in HIF, evidence for
evolutionary modification of this general
biochemical pathway has not be shown.25

These differences could theoretically be
accounted for by the shorter residence
time of Andeans at high altitude com-
pared with the Tibetan people,15 coupled
with ongoing racial mixing between Eu-
ropeans and Andean, which might fur-
ther decrease the genetic adaptation.26

Prevalence of Low Birth Weight
Newborns
Although the above studies suggest poorer
adaptations in Andeans compared with Ti-
betans, there is also evidence for some ad-
aptations among the Andean population
compared with peoples who have lived un-
til recently at sea level. Because chronic
hypoxia causes growth retardation, birth
weight modestly decreases as altitude in-
creases.27,28 As such, Andean populations
who live at high altitude over many gener-
ations have an increased frequency of low
birth weight infants. However, these new-
borns have an average birth weight that is
higher than those from populations living
at high altitude for a shorter period of time,
such as Europeans.29 Furthermore, mixed
European-Andean populations have new-
borns with an intermediate birth weight.29

Again, these observations suggest poten-
tial, as yet unidentified, genetic adaptations
that occur with living at high altitude.

ENVIRONMENTAL FACTORS
RELATED TO HIGH ALTITUDE?

Although it is likely that there have been
genetic adaptations to high altitude and

that these adaptations are more pro-
nounced in those with longer exposure to
high altitude (Tibetans), there is also in-
creasing evidence for environmental fac-
tors that may be involved. Specifically, the
greater hematocrit response and the higher
prevalence of CMS in Andeans may be at
least partially explained by environmental
exposures.30 Most of the Andean sites
where severe polycythemia and CMS have
been reported occur at mining sites,31 as is
the case in the North American Rock-
ies.32,33 The first report of CMS was in the
Andean mining community of Cerro de
Pasco (4300 m altitude),34 and CMS has
been reported in other mining communi-
ties such as Chuquicamata, Chile (2800 m
altitude), where the mean hemoglobin is
significantly higher than in other non-
mining communities that are at higher
altitude (3700 and 4100 m).35,36

One potential explanation for the asso-
ciation of CMS and mining communities
could be exposure to heavy metals that can
stimulate erythropoiesis, such as cobalt
and nickel.37,38 Cobalt, and to a lesser ex-
tent nickel, increase erythropoietin levels
by inhibiting HIF-1� prolyl hydroxylase,
thereby preventing the ubiquitination and
degradation of HIF-1� and HIF-2�. This
inhibition results in higher levels of HIF-
1�, potentiating erythropoietin produc-
tion. Cobalt is commonly present as a con-
taminant in many mines, and we
previously reported high concentrations in
the slag water from the major open pit
mine in Cerro de Pasco.30 In our study,
many of the subjects with severe polycythe-
mia and CMS had elevated cobalt levels in
their blood, and we are currently looking
for the source of the cobalt. Although we
could not find cobalt in the local drinking
water supply, the fact that the mine water
drains into the nearby San Juan River has
led to the suggestion that the local fish
could be a source through ingestion. We
plan to study this hypothesis in the future
and to determine whether N-acetyl cys-
teine, which can chelate cobalt,39 may help
treat CMS in this community. In addition,
the use of chelation therapy may enhance
the sensitivity for detecting cobalt poison-
ing and thereby resolve the discrepancy
from a different study in which elevated
cobalt levels could not be shown in CMS
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subjects from the same city.40 Interestingly,
by stimulating HIF-1�, cobalt will also in-
crease levels of vascular endothelial growth
factor, which is a key factor for angiogene-
sis, especially for the placenta and fetus.
Thus, cobalt exposure could potentially ex-
plain the slightly larger babies in Andeans
compared with Europeans moving to the
Andean regions.

RENAL ADAPTATION IN
INDIVIDUALS CHRONICALLY
LIVING AT HIGH ALTITUDE

Living at high altitude under hypoxic
conditions has many effects on the kid-
ney.41 Some of the more salient findings
are discussed below (Table 2).

Reduced Renal Plasma Flow and
Increased Filtration Fraction
The kidney receives 25% of the cardiac
output. The GFR is used to measure re-
nal function, and this is determined both
by renal plasma flow (RPF) and the per-
centage of RPF that is filtered at the
glomerulus, the filtration fraction (FF;
normally around 20%).

In the setting of polycythemia at alti-
tude, studies show a marked decrease in
RPF with a relative preservation of GFR as
a consequence of an increased FF. The first
study evaluating this finding was per-
formed in five men with severe polycythe-
mia living at high altitude in Peru, in whom
GFR was slightly reduced (11%), and RPF
was reduced to 52% of normal, with a cor-
responding increase in the FF of 89%.42 A
later Peruvian study performed evaluated
kidney function in three different groups
of patients: The first group included men
who lived at sea level, the second was done
in men living at high altitude who pre-
sented with moderate polycythemia, and
the third group included men living at high
altitude who developed CMS. The FF was
18, 25, and 28%, respectively.43 It was
felt that the hypoxia-related increase in
hematocrit led to a decrease in total plasma
volume and an increase in blood viscosity,
producing a decrease in RPF, thereby in-
creasing FF. The increased FF is pre-
sumably caused by efferent arteriolar
vasoconstriction, although the exact me-
diators are unclear, because the renin
angiotensin system is not consistently
activated.44

Microalbuminuria and Proteinuria
An increased prevalence of microalbu-
minuria and proteinuria has been re-
ported in subjects living at high alti-
tude.45 For example, in a recent study in
Tibet, we found that 15% of Tibetans had
microalbuminuria.46 Proteinuria increases
with higher hematocrit. In one study,
6/27 (22%) of CMS patients had protein-
uria �1 g/24 h.47 The pathogenesis of the
proteinuria may relate to a variety of fac-
tors, including the effects of tissue hyp-
oxia within kidney parenchyma, glomer-
ular capillary hypertension, hyperviscosity,
and elevated right heart pressures. The
proteinuria may also relate to the hyper-
uricemia commonly observed at high al-
titude (see below).46

Treatment with angiotensin convert-
ing enzyme (ACE) inhibitors is beneficial
in reducing proteinuria in subjects living
at high altitude. In a study in Bolivia,
high altitude residents administered an
ACE inhibitor showed significant reduc-
tions in proteinuria and hemoglobin.48

The ability of ACE inhibitors to lower he-
moglobin may relate to both improve-
ments in renal medullary blood flow and
direct effects to block angiotensin II–me-
diated erythropoiesis.49

In addition, chronic acetazolamide
treatment reduces both hematocrit50 and
proteinuria51 observed in subjects at high
altitude, because of improvement in ar-
terial oxygenation and perhaps by im-
proving renal blood flow.52

Glomerular Hypertrophy
Subjects living at high altitude are known
to develop large glomeruli. For example,
one study reported the presence of larger
glomeruli in children living at high alti-
tude compared with children living at sea
level.53 Similar findings have been re-
ported in children with hypoxia second-
ary to cyanotic heart disease.54 The
mechanism is uncertain, but could relate
to the effects of low birth weight that has
been shown to cause low nephron num-
ber.55,56 Hyperuricemia can also induce
glomerular hypertrophy in experimental
animals,57 likely mediated in part by ac-
tivation of the renin angiotensin system
and the induction of glomerular hyper-
tension.58,59 Clearly more studies are

Table 1. Comparisons of Tibetans, Andeans, and Ethiopians in responses to
high altitude

Tibetans Andeans Ethiopians

Basal metabolic rate Normal Normal Unknown
Maximum oxygen consumption Normal Normal Unknown
Ventilation (L/min) 15 10.5 Unknown
Hypoxia ventilatory response Higher Lower Unknown
Oxygen saturation of hemoglobin Lower Higher Highest
Hemoglobin Lower Higher Lower
Arterial oxygen content Lower Higher Highest
Pulmonary artery pressure Lower Higher Lower
Pulmonary nitric oxide production Higher Lower Higher
Peripheral capillary density Higher Lower Unknown
Oxygen dissociation Normal Normal Normal
CMS (prevalence) 1.2% 8 to 15% No reports
Adapted from refs. 15, 17, and 69.

Table 2. Common renal findings at
high altitude

Serum Findings

Polycythemia (excessive erythrocytosis)
Hyperuricemia
Hemodynamic findings

elevated systemic BP
elevated renal vascular resistance
elevated pulmonary artery pressure

Reduced renal plasma flow
preserved GFR (elevated FF)

Renal pathology findings
glomerulomegaly

Urinary findings
microalbuminuria

We suggest the designation high altitude renal
syndrome to characterize the combination of
polycythemia, systemic hypertension,
hyperuricemia, and microalbuminuria.
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needed to identify the underlying mech-
anism.

Hyperuricemia and Hypertension
Hypoxemia, when associated with tissue
ischemia, leads to increased production
of uric acid.60 The mechanism may relate
to the reduction in ATP levels with in-
creased adenine nucleotide turnover
coupled with activation of xanthine oxi-
dase.61 In addition, lactate generated
with hypoxia will compete with the ex-
cretion of urate at the proximal tubule,
resulting in a decrease in urate clear-
ance.62 Polycythemia may also result in
increased uric acid levels caused by in-
creased cell turnover.63 It is thus not sur-
prising that subjects living at high alti-
tude frequently have hyperuricemia.

The first description of hyperurice-
mia in high altitude populations was re-
ported in 1968.64 In a small clinical study
we conducted in Peru, we found that uric
acid levels tend to increase with rising he-
matocrit and are significantly greater in
subjects with CMS compared with those
living at sea level.47 A large epidemiologic
study in Tibet also found a significant in-
creased prevalence of hyperuricemia in
Tibetans compared with prior studies
performed among Han Chinese people
living in Guangzhou.46 Moreover, sub-
jects living at high altitude also have a low
fractional excretion of uric acid despite
the high serum levels of uric acid47; sim-
ilar findings have been described in con-
genital cyanotic heart disease.65

Interestingly, the higher prevalence of
hyperuricemia associates with both the
presence of microalbuminuria and sys-
temic hypertension.46 For example, in
our study of Tibetans, 38% of subjects
had hypertension, 29% had hyperurice-
mia, and 16% had albuminuria (includ-
ing microalbuminuria). However, re-
duced GFR (defined as estimated GFR
�60 ml/min per 1.73 m2) was observed
in only 2% of these subjects.46 Multivar-
iate analysis showed that hyperuricemia,
polycythemia, and hypertension were in-
dependent predictors of albuminuria.
These findings expand on the laboratory
finding that experimental hyperuricemia
can induce systemic and glomerular hy-
pertension and microalbuminuria in an-

imals.57,59,66 Taken together, these obser-
vations suggest a new clinical syndrome
that we propose to call high altitude renal
syndrome, comprising the constellation
of high altitude polycythemia, hyperuri-
cemia, systemic hypertension, and mi-
croalbuminuria. Consistent with this
finding, of the 16% of subjects with albu-
minuria, 50.9% had hypertension, 39.4%
had hyperuricemia, and 31.7% had high
hematocrit (defined as hematocrit �50%
in men and �48% in women). Pulmo-
nary hypertension is also a very common
finding in those with CMS67 and might
be considered another defining feature
of high altitude renal syndrome, caused
in part by uric acid–mediated suppres-
sion of pulmonary vascular endothelial
cell NO production and breakdown of
arginine, the nitrogenous substrate for
NO formation.68

CONCLUSIONS

There are a significant number of people
living at high altitude worldwide. The
adaptation of these people to high alti-
tude is likely determined by both genetic
and environmental factors. Compared
with high altitude Tibetans, the Andean
population is more vulnerable than the
Tibetan population to the effects of high
altitude and the development of CMS,
possibly because of their shorter time
span at high altitude and certain heavy
metal exposures. High altitude is also as-
sociated with increased risk for the devel-
opment of microalbuminuria, hyperten-
sion, and hyperuricemia, with relative
preservation of GFR and with an in-
creased FF. Some studies suggest ACE in-
hibitors may be helpful for high altitude
proteinuria. The possibility that some
subjects at high altitude with CMS may
have heavy metal poisoning from cobalt
or nickel also has to be considered.
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