The Regulation of Parathyroid Hormone Secretion and Synthesis

Rajiv Kumar* and James R. Thompson†

*Division of Nephrology and Hypertension, Department of Internal Medicine, Biochemistry and Molecular Biology, and †Department of Physiology, Biophysics and Bioengineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota

ABSTRACT
Secondary hyperparathyroidism classically appears during the course of chronic renal failure and sometimes after renal transplantation. Understanding the mechanisms by which parathyroid hormone (PTH) synthesis and secretion are normally regulated is important in devising methods to regulate overactivity and hyperplasia of the parathyroid gland after the onset of renal insufficiency. Rapid regulation of PTH secretion in response to variations in serum calcium is mediated by G-protein coupled, calcium-sensing receptors on parathyroid cells, whereas alterations in the stability of mRNA-encoding PTH by mRNA-binding proteins occur in response to prolonged changes in serum calcium. Independent of changes in intestinal calcium absorption and serum calcium, 1α,25-dihydroxyvitamin D also represses the transcription of PTH by associating with the vitamin D receptor, which heterodimerizes with retinoic acid X receptors to bind vitamin D-response elements within the PTH gene. 1α,25-Dihydroxyvitamin D additionally regulates the expression of calcium-sensing receptors to indirectly alter PTH secretion. In 2°HPT seen in renal failure, reduced concentrations of calcium-sensing and vitamin D receptors, and altered mRNA-binding protein activities within the parathyroid cell, increase PTH secretion in addition to the more widely recognized changes in serum calcium, phosphorus, and 1α,25-dihydroxyvitamin D. The treatment of secondary hyperparathyroidism by correction of serum calcium and phosphorus concentrations and the administration of vitamin D analogs and calcimimetic agents may be augmented in the future by agents that alter the stability of mRNA-encoding PTH.

The central role of the parathyroid glands in regulating Ca²⁺ homeostasis by modulating bone metabolism, the synthesis of 1α,25-dihydroxyvitamin D (1α,25(OH)₂ D) in proximal tubules, and the reabsorption of Ca²⁺ in the distal nephron is widely appreciated by the readers of this journal.1–5 Secondary hyperparathyroidism (2°HPT) frequently occurs in the setting of chronic kidney disease (CKD), of end-stage renal disease (ESRD), or after renal transplantation.6–12 and uncontrolled 2°HPT in CKD and ESRD associates with an increased incidence of fractures and mortality.13–16

The pathogenesis of 2°HPT in CKD is complex. Phosphate retention, hyperphosphatemia, low serum Ca²⁺ (sCa²⁺), elevated levels of parathyroid hormone (PTH), 1α,25(OH)₂ D deficiency, intestinal Ca²⁺ malabsorption, the reduction of vitamin D receptors (VDR) and calcium-sensing receptors (CaSR) in the parathyroid glands, and altered mRNA-binding protein activities modulating PTH transcripts play a role in the development of 2°HPT.17–30 Parathyroid hyperplasia is often present as well.31,32 On the basis of these observations regarding pathogenesis, therapy for 2°HPT in the context of CKD and ESRD includes the control of serum phosphate concentrations, the administration of Ca²⁺ and vitamin D analogs, and the administration of calcimimetics.33,34,16,35,36

Nevertheless, 2°HPT remains a significant clinical problem and additional methods for the treatment of this condition would be helpful, especially in refractory situations, where other measures have failed or are only partially effective. Knowledge about the mechanisms by which parathyroid hormone secretion and synthesis occurs is therefore of value in designing new approaches to the treatment of this condition. Here we briefly review the mechanisms that modulate PTH release and secretion and identify abnormalities that are present in progressive renal disease.

PTH RELEASE AND SYNTHESIS DETERMINE SERUM PTH CONCENTRATIONS

Serum PTH concentrations are dependent upon the release of PTH stored in
secretory granules within the parathyroid gland and by the synthesis of new PTH.1,37 sCa^{2+}, phosphorus, and vitamin D metabolites play a role in regulating PTH release and synthesis.1,3,28,38–41 Rapid PTH release from secretory granules in hypocalcemic states is modulated by the binding of Ca^{2+} to CaSRs on chief cells, whereas long-term replenishment of PTH stores is dependent on new PTH synthesis that is controlled by the availability of mRNA-encoding PTH for ribosomal translation into prepro-PTH.2,42,43,27,44–49 Hypocalcemia also retards the rate of degradation of PTH within the parathyroid gland, thus making more PTH available for release,50,51 and increases cell division in the parathyroid gland possibly through the action of the CaSR.42,57–59 Phosphorus additionally alters PTH synthesis, although the precise mechanisms by which changes in phosphate concentrations are detected or sensed by the parathyroid gland are unknown.28 1α,25-Dihydroxyvitamin D (1α,25(OH)_{2}D) alters the transcription of PTH and may have an indirect effect on PTH release by increasing the expression of CaSR.38–41,45,53–56

ROLE OF THE CASR IN MEDIATING PTH RELEASE

Changes in concentrations of sCa^{2+} are sensed by chief cells through a cell-surface, seven-transmembrane, G protein-coupled receptor, the CaSR,42,57–59 and receptor activity results in rapid alterations in PTH secretion.57 After the induction of abrupt and sustained hypocalcemia, plasma concentrations of PTH increase within 1 minute, peak at 4 to 10 minutes, and thereafter decline gradually to approximately 60% of the maximum at 60 minutes, despite ongoing and constant hypocalcemia. Abrupt restoration of normocalcemia from the dominant hypocalcemia.62,63,53,64–68 The CaSR plays an important role in regulating Ca^{2+} reabsorption in the thick ascending limb of the loop of Henle.60–62

![Figure 1](image-url)

Figure 1. A hypothetical dimeric model of residues D23 (blue) to I528 (red) of the human calcium-sensing receptor extracellular domain (CaSR ECD). (A) Both monomers containing just the Venus flytrap region of the CaSR ECD are shown in a closed and presumably active conformation as was reported for the extracellular domain of the glutamate receptor with glutamate bound. The two yellow spheres (yellow arrows) indicate putative Ca^{2+}-binding sites, found at the nexus of where both lobes of a monomer meet. Most residues forming this cation-binding site are not conserved in glutamate receptor. The additional cyan spheres within the topmost lobes of the dimer designate possible Mg^{2+}-binding sites (green spheres indicated by green arrows) brought over from glutamate receptor coordinates. These Mg^{2+} sites are completely conserved in CaSR. The dimer interface of the portion of CaSR shown is completely formed from interactions between these two upper lobes. There are no intermolecular disulfide bridges linking the dimer together within this portion of the ECD of CaSR, although two intramolecular disulfides exist. (B) A model of the apo-CaSR dimer is portrayed. Again, the color ramps from blue to red from D23 to I528. The Mg^{2+} sites are present, although there is no experimental basis for this premise. Of note is the significant opening and expansion of the cavities between the upper and lower lobes of each monomer, the areas indicated by the two yellow ovals. (C) The upper lobes of the CaSR atomic coordinates shown above in (A) (with Ca^{2+} bound, now made gray in color) are superimposed on the apo-form model for the CaSR dimer drawn in rainbow as in (B). The red arrows point to a large displacement in the orientation and position of the carboxy-terminal end of the structure near where the CaSR cysteine-rich domains (not shown) might be found. Significant conformational changes within parts of the CaSR ECD connecting with the transmembrane domains probably occur on Ca binding.

The CaSR has a large extracellular domain of approximately 600 amino acids, a seven-pass transmembrane domain, and an intracellular carboxyl-terminal domain that has several phosphorylation sites.69 The receptor binds Ca^{2+} in its extracellular domain, most likely as a dimer in the so-called “Venus flytrap” configuration (Figure 1, A through C).70–73 Our model of the human CaSR shown in Figure 1 was obtained using multiple sequence alignments and initial coordinate models and two separate algorithms.74–77 The best model resulted from using the extracellular domain of the glutamate receptor (Protein Data Bank code 1ewk)78 as the template for main chain atoms. The atomic coordinates within the model were inspected and manually corrected for steric clashes, for alternative residue rotamer choices that improve hydrogen bonding, and for Ramachandran and other conformational outliers. The CaSR dimer from D23 to I528 displays perfect twofold symmetry similar to that of the glutamate receptor bound with both glutamate and gadolinium ions.79 The putative Ca^{2+}-binding sites were included in our CaSR model based on the presence of Gd^{3+} atomic coordinates within other glutamate receptor structures (PDBs 1ewk and 1isz). In the glutamate receptor, the Gd^{3+} location occurs at an acidic patch, including the ligating residues E238, D215, and E224 with one standout residue R220. The acidic residues of equivalent positions in CaSR are conserved, although an arginine residue is not conserved. Therefore, it is likely that the Ca^{2+}-binding po-
sition in the glutamate receptor and the CaSR are similar. When Ca\(^{2+}\) binds to the CaSR, it elicits a conformational change within the extracellular domain of the receptor (compare Figure 1B with Figure 1C). These changes are possibly transmitted through the seven-pass transmembrane domain to allow interactions of the intracellular domains of the receptor with heterotrimeric G protein subunits, G\(_{qa}\) and G\(_{ia}\). In addition to Ca\(^{2+}\), the CaSR binds several metals, amino acids, antibiotics, and organic compounds that modulate its activity (Figure 2). For modeling of phenylalanine and neomycin, coordinates were docked into our model of CaSR manually, maximizing the number of hydrogen bonds while minimizing the number of steric clashes.

Agents such as L-amino acids with aromatic side chains exert allosteric effects on the CaSR and sensitize it to the effects of agonists such as Ca\(^{2+}\). When extracellular Ca\(^{2+}\) binds to the CaSR, it elicits conformational changes within the receptor. The heterotrimeric G protein subunits, G\(_{qa}\) and G\(_{ia}\), are recruited to the receptor and alter the amounts or activity of several intracellular mediators including Ca\(^{2+}\), cAMP, and phospholipases within the chief cell (Figure 3). Intracellular Ca\(^{2+}\) is altered as a result of activation of phospholipase C (PLC) by the G\(_{qa}\) subunit of the heterotrimeric G proteins. This results in the PLC-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate and the resultant formation of inositol 1,4,5-trisphosphate and diacylglycerol. 1,4,5-Trisphosphate mobilizes intracellular Ca\(^{2+}\) stores by binding to its cognate receptor. The CaSR also interacts with G\(_{ia}\) to inhibit adenylate cyclase activity that reduces intracellular cyclic AMP. In addition, activation of PLA\(_2\) results in the production of arachidonic acid and activation of phosphatidylinositol 4-kinase which replenishes phosphatidylinositol-4,5-bisphosphate. These changes within chief cells rapidly enhance the release of preformed PTH from the parathyroid gland.

In addition to controlling PTH release and modulating Ca\(^{2+}\) flux in the kidney, the CaSR also plays a role in the control of cellular differentiation, cellular growth, and apoptosis. CaSRs activate signaling pathways that regulate cellular growth through MAPKs, ERKs, and JNK kinases. The binding of CaSRs to intracellular scaffolding proteins such as filamin A is important in mediating this effect. The CaSR interacts with filamin A to create a scaffold necessary for the organization of G\(_{qa}\), Rho guanine nucleotide exchange factor, and Rho signaling pathways. The affinity of the CaSR for filamin A is greater in the presence of Ca\(^{2+}\). Filamin A protects the CaSR from degradation, and silencing filamin A expression with siRNAs inhibits CaSR signaling. CaSR activation increases the activity of a serum-response element by increasing the membrane localization of the Rho protein.

Transcription of the CaSR is not influenced by Ca\(^{2+}\) concentrations but is altered in vivo by 1\(\alpha\),25(OH)\(_2\)D in the parathyroid gland, in the kidney, and in thyroid C cells. Vitamin D response elements have been identified in the two promoter regions (P1 and P2), 380 and 160 bp upstream of the transcription start sites of the CaSR gene, respectively. These vitamin D response elements are atypical hexameric repeats that are separated by three nucleotides. In CKD, CaSR amounts are reduced in the parathyroid gland, most likely as a result of hyperplasia and perhaps as a result of reduced serum 1\(\alpha\),25(OH)\(_2\)D concentrations. The reductions in CaSR concentrations in the parathyroid gland attenuate the responsiveness of the gland to sCa\(^{2+}\) and contribute to 2\(\alpha\)HPT.

THE REGULATION OF PTH SYNTHESIS

As noted earlier, replenishment of PTH stores after the release of preformed PTH is dependent on the synthesis of new prepro-PTH by ribosomes. This is dependent, in turn, upon the availability of mRNA encoding PTH. As we discuss in the sections that follow, changes in mRNA concentrations are the result of changes in PTH gene transcription or mRNA stability.
Activated by Gq

mobilized from intracellular stores, and the activation of PKC. MAPK and PLA2 are with attendant downstream effects such as an increase in intracellular calcium that is within the parathyroid gland.46,47 Sur-

results in the activation of PLC that increases inositol (1,4,5)P3 and diacylglycerol (DAG) levels of mRNA-encoding

J Am Soc Nephrol

When sCa2+

PTH by Changing mRNA Stability

Transcriptional Regulation of mRNA-Encoding PTH

The rate of transcription of the PTH gene is repressed by 1α,25(OH)2D.38,39,41,45 1α,25(OH)2D binds to the VDR receptor and the liganded VDR, in association with the retinoic acid X receptor (RXR), binds to a vitamin D response element within the promoter region of the PTH gene.111 Structurally, this response element resembles those found in other genes that are upregulated by 1α,25(OH)2D. Reduced 1α,25(OH)2D concentrations in CKD or ESRD, as well as reduced VDR concentrations within the parathyroid gland, contribute to 2°HPT.21

Role of RNA-Binding Proteins in the Regulation of mRNA-Encoding PTH by Changing mRNA Stability

When sCa2+ concentrations decrease, levels of mRNA-encoding PTH increase within the parathyroid gland.46,47 Surprisingly, changes in mRNA synthesis in response to decreases in sCa2+ are not due to changes in PTH gene transcription.28,27,44,48,49 Rather, levels of bovine and murine mRNA-encoding pth are regulated by proteins that bind elements within the 3'-untranslated region that influence mRNA stability.28,27,44,48,49

By way of background, after transcription, nascent RNA undergoes 5'-methyl capping, splicing, cleavage, and polyadenylation in the nucleus (Figure 4A).114–117 After export from the nucleus, mRNA transcripts interact with RNA-binding proteins that influence RNA half-life and stability within the cell (Figure 4A).95,118–120 RNA-binding proteins interact with sequence-specific elements, adenine- and uridine-rich elements (AREs), that are usually present within the 3'-untranslated regions (3'-UTRs) of RNA and regulate the rate at which mRNAs are translated or degraded in cells.121,114,122–124 The fate of an mRNA species containing an ARE bound to ARE-binding proteins is partly dependent upon the relative amounts of different bound stabilizing or destabilizing ARE-binding proteins. AREs have a variable structure; Class I AREs contain several copies of the AUUUA motif dispersed within U-rich regions; Class II AREs possess at least two overlapping UUAUUUA(U/A) nonamers; Class III AREs are less well-defined and generally do not contain an AUUUA sequence.125,114,122

As shown in Figure 4A, RNAs targeted for degradation undergo deadenylation, decapping, and degradation in a large multiprotein complex, the exosome, or in cytoplasmic compartments known as GW bodies or processing bodies (P-bodies).126–128 A 63-nucleotide ARE in the 3'-UTR of murine mRNA-encoding PTH, comprised of a core 26-nucleotide minimal binding sequence and adjacent flanking regions, regulates mRNA stability in response to changes in Ca2+ and phosphate concentrations.28,44,129 The ARE in the 3'-UTR of mRNA-encoding PTH binds two proteins, AU-rich element–binding protein 1 (AUF1) and K-ho-
mology splicing regulatory protein (KSRP).27,28 AUF1 increases mRNA half-life, whereas KSRP has the opposite ef-

The Bioactivity of KSRP Is Altered by Other Intracellular Enzymes

Peptidyl-prolyl cis-trans isomerase, NIMA-

Figure 3. Pathways by which the CaSR homodimer signals in cells after binding of Ca2+ to the extracellular domains (red line) of the CaSR molecules in the homodimeric pair. Through the association of the CaSR with the i-type heterotrimeric G protein, Gi, adenylylate cyclase (AC) activity is inhibited and cyclic AMP (cAMP) concentrations decrease. Association of the CaSR with the Gαq subunit of q-type heterotrimeric G protein results in the activation of PLC that increases inositol (1,4,5)P3 and diacylglycerol (DAG) with attendant downstream effects such as an increase in intracellular calcium that is mobilized from intracellular stores, and the activation of PKC. MAPK and PLA2 are activated by Gαq-dependent pathways with increases in MEK and ERK and an increase in arachidonic acid formation.
a low Ca\(^{2+}\) diet or by inducing CKD with adenine reduces Pin1 activity in the parathyroid gland.\(^{30}\) Reduced Pin1 activity correlates with increased levels of mRNA-encoding \(PTH\) in the PT glans of rats fed a low Ca diet or rats with renal failure. As a result of low Pin1 activity, less nonphosphorylated KSRP is available to bind to the ARE in the 3'-UTR of mRNA-encoding \(PTH\).\(^{30}\) The reduction in Pin1 activity reduces the ratio of the ARE-BPs, KSRP, and AUF1. AUF1 activity predominates, and the half-life and stability of mRNA-encoding \(PTH\) is increased because of unopposed AUF1 activity. Increased amounts of mRNA allow more PTH to be synthesized in ribosomes and hyperparathyroidism results. It is not known what triggers the reduction in Pin1 activity in the
Increased expression levels of mRNA-encoding radation and that favor an increase in specifically those that increase mRNA deg-

VDRs, which influence the transcription gland, and a reduction in the number of CaSRs in the parathyroid These factors include a reduction in of PTH release and synthesis (Figure 5).

Thus, in CKD and ESRD, multiple ab- normalities contribute to the develop- ment of 2°HPT by enhancing the rate normalities contribute to the develop- ment of parathyroid gland specific

CONCLUSIONS

Thus, in CKD and ESRD, multiple ab- normalities contribute to the development of 2°HPT by enhancing the rate of PTH release and synthesis (Figure 5). These factors include a reduction in number of CaSRs in the parathyroid gland, and a reduction in the number of VDRs, which influence the transcription of CaSR and PTH. In addition, there are changes in the amounts of mRNA-encoding PTH binding proteins, specifically those that increase mRNA degr- radation and that favor an increase in levels of mRNA-encoding PTH within the chief cell. Modulators of CaSR and VDR already are available and are in widespread use for the treatment of 2°HPT in CKD and ESRD. The develop- ment of parathyroid gland specific modulators of ARE-binding proteins might result in drugs that are effective for the control of secondary hyperparathyroidism and parathyroid hyperplasia. Such drugs might be used in conjunction with vitamin D analogs and calcimimetic agents for the treatment of 2°HPT.

Disclosures

Dr. Kumar’s laboratory is supported by NIH grants DK76829 and DK77669, and grants from Genzyme (GRIP) and Abbott.

DISCLOSURES

None.

REFERENCES

18. Slatopolsky E, Caglar S, Gradowska L, Can-

106. Ward DT: Calcium receptor-mediated intracellular signalling. Cell Calcium 35: 217–228, 2004