analysis of the effects on BP lowering (24-hour BP measurements) and its effect on cardiac performance, important because of the high prevalence of cardiac disease in CKD, is required.

Pharmacokinetic data on atrasentan show a half-life of 21 hours in patients without renal disease,18 but pharmacokinetics may be different in proteinuric nephropathy. The preliminary data show negative effects in patients with preexisting cardiac disease, and more data on the safety of atrasentan in patients with CKD and cardiac changes will be required. On the basis of the available information, one can already state specifically that major diastolic heart failure is a contraindication.

DISCLOSURES
E.R. has received consultancy fees from Abbott, Daiichi Sankyo, Boehringer Ingelheim, and Hexal. R.R.W. has received consultancy fees from Speedel Pharma, Actelion, Abbott, and Novartis.

REFERENCES
8. Ong AC, Jowett TP, Firth JD, Burton S, Karet FE, Fine LG: An endo- 

Aspirin and Arteriovenous Graft Thrombosis in Hemodialysis: Just What the Doctor Ordered?
Fritz R. Bech,* and Glenn M. Chertow†
*Division of Vascular Surgery, Department of Surgery, and †Division of Nephrology, Department of Medicine, Stanford University School of Medicine, VA Palo Alto Healthcare System, Palo Alto, California

Published online ahead of print. Publication date available at www.jasn.org.
Correspondence: Dr. Glenn M. Chertow, Division of Nephrology, 780 Welch Road, Suite 106, Palo Alto, CA 94034. Phone: 650-725-4738; Fax: 650-721-1443; E-mail: gchertow@stanford.edu
Copyright © 2011 by the American Society of Nephrology

The Center for Medicare and Medicaid Services’ (CMS) Fistula First initiative has changed dialysis practice. In 2003, more
than one third (37%) of patients on hemodialysis (HD) used prosthetic arteriovenous grafts (AVGs), slightly more than the 35% using native AV fistulas (AVFs). By 2010, fewer than 20% of prevalent patients on HD used AVGS.

In this issue of JASN, baseline aspirin (ASA) use in the Dialysis Access Consortium (DAC) Graft Trial was shown to be associated with a marginal extension in AVG longevity.1 Although some might suggest that the marginal extension (supported by a marginal P value) is of marginal importance, any therapeutic strategy that might enhance AVG performance in any way would be welcome. A large fraction of patients in the United States fail to develop a mature, usable AVF (as the DAC Fistula Trial confirmed2), such that a larger fraction of prevalent patients remain dependent on tunneled catheters for permanent vascular access. An inexpensive and safe therapy that might add even a few weeks of uninterrupted long-term HD access deserves our close attention.

Dixon et al.3 meticulously performed a secondary analysis of data from the DAC Graft Trial, in which 649 patients were assigned to either placebo or twice-daily extended-release dipyridamole (200 mg) and ASA (25 mg; ERDP/ASA) after AVG placement. The primary outcome—loss of primary unassisted patency—was defined as the first occurrence of AVG thrombosis or any procedure (angioplasty or surgery) to treat AVG stenosis. Patients who were assigned to ERDP/ASA experienced an absolute risk reduction of 5% (28 versus 23% with primary unassisted patency at 1 year), corresponding to an adjusted relative risk reduction of 18% (95% confidence interval [CI] 2 to 32%). Rates of hemorrhage and other adverse events were similar across randomized groups, and other retrospective studies of HD patients4 suggested marginal risk for ASA exposure in this setting (1.06; 95% CI 1.01 to 1.11).

Because 43% of patients who entered the trial were taking ASA before randomization (typically 81 mg/d), the authors were able to compare outcomes associated with ASA use across and within randomized groups assigned to either ERDP/ASA or placebo. Patients who were taking ASA before randomization were older (62.5 versus 55.1 years) and had a higher prevalence of diabetes (74 versus 54%). Unadjusted rates of loss of primary unassisted patency were 81 and 82% in the prerandomization ASA and non-ASA groups, respectively. After adjustment for unbalanced baseline covariates, there was a relative difference of 17% (95% CI −1 to 32%) in favor of patients who were taking ASA before randomization. Although the interaction (randomized group × prerandomization ASA exposure) was not significant, it is noteworthy that the estimated relative risk reduction associated with prerandomization ASA use was 27% (95% CI 3 to 45%) in patients who were randomly assigned to placebo and 10% (95% CI −22 to 33%) in patients who were randomly assigned to ERDP/ASA.

To gauge the importance of these observations, recall that AVGS fail for several reasons. Intimal hyperplasia at the venous anastomosis is the most common reason for AVG thrombosis; eventually flow declines sufficiently to result in thrombosis and AVG failure. Others occlude suddenly after functioning well with no demonstrable structural abnormalities. These latter events are probably multifactorial; extrinsic compression may play a role, as could intradialytic hypotension and/or thrombophilia. The prosthetic luminal surface of an AVG, lacking endothelium, is vulnerable to both stasis and hypercoagulability. Because thrombosis is the final common pathway, anticoagulant or antiplatelet agents would seem to be logical prophylactic strategies. Controlled trials of warfarin proved ineffective and hazardous5; small studies of antiplatelet agents have shown mixed results. In the current analysis, enhanced AVG longevity was achieved with low-dosage ASA without excess bleeding. Also noteworthy was the lower percentage of AVGS that clotted unexpectedly after performing well without underlying venous stenosis: 13% failed in patients who were taking ASA at baseline compared with 20% in patients who were not taking ASA (adjusted hazard ratio 0.60; 95% CI 0.38 to 0.95).

The overall poor performance of AVGS in the DAC Trial is sobering. In current practice, patients typically undergo AVG placement because of risk factors for nonmaturation, including advanced age, female gender, peripheral arterial disease, and obesity6 or after failure of one or more AVFs. The percentage of patients with functional AVFs may rise further in coming years with ongoing payer and provider emphasis on AVF creation and enhanced surgical skill and experience; AVF usage to initiate dialysis is now twice as likely in facilities operated by the Department of Defense or Veterans Affairs.7,8 However, a plateau is foreseeable. There will be an ongoing role for AVGS; thus, no viable approach to enhance AVG longevity should be dismissed. Indeed, despite the mantra of Fistula First, AVGS may be preferable to AVFs when life expectancy is relatively short or in patients with a low likelihood of fistula maturation, in the latter case, to limit person-months of tunneled catheter exposure.

Venous intimal hyperplasia remains unsolved despite years of basic and translational research; however, promising therapeutics are on the horizon. The antiproliferative effects of dipyridamole may have been responsible for the modest benefit observed in the parent DAC trial;9 other systemic or locally applied antiproliferative agents may ultimately prove more effective. Spontaneously self-assembling nitric oxide–releasing nanofiber gels applied to injured rat carotid arteries reduce intimal hyperplasia.10 Heparin-bonded grafts are in widespread use, and new biologically active grafts can be anticipated.11 A completely tissue-engineered vascular autograft has had limited success in a small clinical trial.12

Roughly 50 years after the advent of the Scribner shunt, it is dispiriting to reflect on the lack of reliable means for establishing long-term vascular access for HD. Bioengineering programs take note: We have nothing shiny and new just yet. While we await the paradigm shift, we must comfort ourselves with old-fashioned technology and low-cost, modestly effective interventions. For the meantime, low-dosage daily ASA may be just what the doctor ordered.
REFERENCES


