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Most physiologic processes, including sleep-
wake patterns, heartbeat, and systemic ar-
terial BP, exhibit a circadian pattern of
variation. The word circadian is derived
from the Latin words circa and dies, mean-
ing about a day. The term circadian is used
here to denote biologic processes that oc-
cur with a daily, or approximately a 24-
hour rhythm. A more stringent definition
of circadian is used in studies of biologic
rhythms to describe oscillations that occur
under constant conditions; a process is
considered truly circadian only if the oscil-
lation is maintained in the absence of ex-
ternal zeitgeibers, or time cues such as
light/dark cycles. It has been over a century
sinceVogel firstreporteddaily fluctuationsin
urine volume.1 Healthy individuals excrete
more electrolytes and produce more urine
during the day than at night, and there are
diurnal rhythms for urinary sodium, potas-
sium, and chloride excretion.2 Disruption of
these patterns is often associated with hyper-
tension and cardiovascular disease.3,4

The master pacemaker of the circadian
clock is located in the suprachiasmatic nu-
cleus (SCN) of the brain. This central clock
is entrained by light signals transmitted
from the retina through the retinohypo-
thalamic tract. A core group of clock
genes functions in a series of transcrip-
tion-based feedback loops (Figure 1).
Transcription factors, Bmal1 and Clock,
drive the transcription of the Period (Per1,
2, and 3) and Cryptochrome (Cry1 and 2)
genes and nuclear receptor genes, ROR and
Rev-erb�. The Bmal1/Clock heterodimer
regulates gene expression by binding
E-box response elements (CANNTG) in
the promoter region of target genes. Period
and Cryptochrome inhibit Bmal1 and
Clock action, thereby repressing their own
transcription, whereas ROR and Rev-erb�
mediate opposing action on Bmal1 ex-
pression.5,6 Post-translational modifica-
tion controls stability and nuclear entry of
clock proteins, contributes to the precise
timing of the clock mechanism, and is

thought to allow crosstalk between physi-
ology and the clock.5,7 In addition to reg-
ulating each other to maintain oscilla-
tion, the core clock proteins regulate
genes that mediate physiologic func-
tions governed by circadian rhythm.
These clock-controlled output genes
constitute up to 15% of expressed tran-
scripts in some tissues.8

The core clock machinery has been
identified in nearly every peripheral tis-
sue. The master clock in the SCN syn-
chronizes the functions of these periph-
eral clocks through neuronal and
humoral signaling.9 As well, body tem-
perature, rest-activity cycles, and feeding
cycles contribute to entrainment of the
peripheral clocks. Although the relation-
ship between the central and peripheral
clocks has been described as co-dependent,
the peripheral clocks do not respond iden-
tically to cues from the SCN.10–12 Thus,
study of the clock in individual tissues is
necessary. The role of circadian rhythms
has recently been reviewed for the cardio-
vascular system,13 the vasculature,14,15

metabolic syndrome,16 and the gastroin-
testinal system.17 Here we examine the
clinical and molecular evidence supporting
a critical role for the clock in the control of
renal function.
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ABSTRACT
Circadian variations in renal function were first described in the 19th century, and GFR,
renal blood flow, urine production, and electrolyte excretion exhibit daily oscillations.
These clinical observations are well established, but the underlying mechanisms that
govern circadian fluctuations in kidney are not fully understood. Here we provide a
brief overview of the machinery governing the circadian clock and examine the clinical
and molecular evidence supporting a critical role for circadian rhythm in the kidney.
There is a connection between BP oscillation and renal disease that supports the use
of chronotherapy in the treatment of hypertension or correction of nondipping BP.
Such studies support a developing model of clock controlled sodium and water
transport in renal epithelial cells. Recent advances in identifying novel clock-controlled
genes using rodent and cellular models also shed light on the molecular mechanisms
by which the circadian clock controls renal function; however, the field is new and
much more work remains.
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ROLE OF THE CIRCADIAN CLOCK
IN THE KIDNEY: CLINICAL
EVIDENCE

Nondipping BP and the Kidney
Cardiovascular events such as stroke and
myocardial infarction are known to peak
with the morning surge in BP and heart
rate. BP increases in the early morning, fol-
lowed by a plateau during the day, and then
dips during sleep.18 Patients who do not
exhibit a 10 to 20% decrease in nighttime
versus daytime BP are designated “nondip-
pers” and are at increased risk of cardiac
death.19 Nondippers exhibit increased left
ventricular hypertrophy, carotid artery
wall thickness and atherosclerotic plaques,
microalbuminuria, cerebrovascular dis-
ease, congestive heart failure, vascular de-
mentia, stroke, and myocardial infarc-
tion.20 Importantly, nondipping may
predict renal damage.21

Several reports link aldosterone sig-
naling to the disruption of circadian BP
patterns, suggesting a role for renal func-
tion in maintaining normal circadian

changes in BP. Patients suffering from al-
dosteronism exhibit the nondipper pat-
tern,22,23 and treatment with the angio-
tension II receptor blocker, irbesartan
corrects the nondipper pattern in salt-
sensitive hypertension.24 The diuretic
hydrocholorothiazide restores an appro-
priate decrease in nocturnal BP in non-
dipping patients but had no effect in dip-
pers.25 Furthermore, dietary sodium
restriction re-establishes the nocturnal
dipping pattern.26 Nondipping associ-
ates with an increased risk of nephropa-
thy27 and chronic kidney disease.28 Impor-
tantly, renal transplantation can rescue the
nondipping phenotype,29 although a lack
of nocturnal variation can portend poor al-
lograft survival.30 Collectively, thesefindings
suggest a direct link between abnormal circa-
dian patterns in BP and inappropriate so-
dium transport in the kidney.

Salt handling by the kidney has long
been recognized as a critical determinant
of BP, and hypertension is rarely ob-
served in the absence of renal dysfunc-
tion.31 A decline in renal function di-

rectly correlates with a nondipping
phenotype. A well-controlled study
showed that creatinine clearance de-
clines more rapidly in nondippers com-
pared with dippers, and urinary protein
excretion is greater in the nondippers
compared with dippers.32 The nondip-
ping phenotype also associates with a
faster decline in renal function, and the
authors suggested that regulation of
nocturnal BP should be an additional
goal of anti-hypertensive treatment.
Similarly, Agarwal and Light33 deter-
mined that a nondipping status was a
significant predictor of chronic kidney
disease and proteinuria and inferred
that correction of dipper status could
be an effective therapy for kidney dis-
ease. Taken together, these studies
showed the important relationship be-
tween renal physiology and the circa-
dian pattern of BP.

Chronotherapy in the Treatment of
Hypertension
Increasing evidence supports a critical role
for the circadian clock in human health.
Chronotherapy, the scheduled administra-
tion of pharmaceutical agents with respect
to an individual’s circadian rhythms, may
increase the effectiveness and decrease the
side effects of pharmacologic agents.34,35

Chronotherapy has been investigated in the
treatment of many nonrenal diseases36–40

and has been proposed for treatment of
diabetes,41 cardiac arrhythmias,42 and
ischemic heart disease.43

The potential benefits of chrono-
therapy in the treatment of hypertension
include control of BP and normalization
of the dipping pattern.44 Cross-sectional
and longitudinal studies consistently
show that nondipping is a preclinical
marker for cardiovascular and renal dis-
ease and can be used to predict cardio-
vascular events.45 Indeed, accruing evi-
dence suggests that nighttime BP is a
more important indicator of cardiovas-
cular health than daytime values.46,47

One example comes from a convincing
study in which previously untreated hy-
pertensive patients were randomized
into groups receiving a single daily dose
of ramipril either in the morning or at
bedtime.48 BP during sleep was signifi-
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Figure 1. Transcriptional mechanism of the circadian clock. Bmal1 and Clock het-
erodimerize to positively regulate expression of the Period (per) and Cryptochrome (cry)
gene families, as well as the retinoic acid orphan receptor (ror) and Nr1d1 (rev-erb�)
genes. Per/Cry inhibit Bmal1/Clock action to repress their own transcription, whereas
ROR and Rev-erb� mediate opposing action on bmal1 gene expression. Expression
of the Clock protein is constitutive in many tissues. Bmal1/Clock action is mediated
through binding of E-box response elements (CANNTG) in the promoters of target
genes.
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cantly reduced in bedtime-dosed pa-
tients compared with morning-dosed
patients. Notably, nighttime dosing also
increases the effectiveness of ramipril as
BP reduction lasted 24 hours after bed-
time dosing compared with 16 hours af-
ter morning dosing.

The effect of nighttime administration
of anti-hypertensive drugs in nondipping
patients has been tested in geographically
distinct populations.49,50,51 Anti-hyperten-
sive therapy delivered as an evening dose is
highly effective at correcting the nondip-
ping phenotype. Bedtime administration
of valsartan, doxazosin (extended release),
torasemid, or long-acting nifedipine im-
proves efficacy and reduces side effects of
anti-hypertensive treatment.52 These stud-
ies highlight the importance of evaluating
the 24-hour BP profile as opposed to sin-
gle, daytime office measurements. Al-
though these results are promising, larger,
more comprehensive trials are needed. A
reduction in all-cause mortality would be a
convincing outcome. A long-term study
following thousands of subjects, the re-
cently completed Monitorización Ambu-
latoria de la Presión Arterial y Eventos Car-
diovasculares—Ambulatory Blood Pressure
Monitoring and Cardiovascular Events
(MAPEC) trial, was designed to determine
whether restoring the dipper pattern using
chronotherapy decreases the risk of cardio-
vascular disease.53 Providing evidence for the
use of chronotherapy in hypertension, the
MAPEC results demonstrate that bedtime
drug administration, compared to conven-
tional upon-awakening therapy, was more
effective at controlling BP and decreasing
non-dipping, and resulted in significant re-
duction of cardiovascular morbidity and
mortality.54

Circadian Disturbances in Dialysis
Patients
Melatonin is an important regulator of
the circadian sleep-wake cycle. In
healthy individuals, the pineal gland
produces melatonin at night; light ex-
posure suppresses melatonin produc-
tion. The expected nighttime peak in
melatonin levels is lost in patients un-
dergoing hemodialysis, and decreased
melatonin levels associate with more
severe sleep disturbances in these pa-

tients. Interestingly, patients receiving
nocturnal dialysis experienced the nor-
mal nighttime peak in melatonin and
reported better sleep quality compared
with daytime dialysis patients.55 A re-
cent study in patients with chonic kid-
ney disease (CKD) found that melatonin
amplitude decreases with advancing renal
disease, emphasizing the need for further
investigation into circadian mechanisms in
CKD patients.55

Patients undergoing dialysis treat-
ment are more prone to sleep distur-
bances compared with the general popu-
lation, resulting in a negative impact on
overall health and quality of life. Non-
dipping CKD patients seem to have poor
sleep quality.56 Circadian sleep-wake dis-
turbances are common in ESRD pa-
tients.57 Renal disease and dialysis treat-
ment may contribute to the etiology of
sleep disturbances in dialysis patients in-
dependently of each other. Up to 80% of
ESRD patients have reported subjective
sleep problems. Daytime sleepiness is in-
creased by dialysis, and this effect is the
result of several factors, including ele-
vated body temperature during treat-
ment and the physical and emotional
stress caused by the procedure. Likewise,
sleep disturbances are a common side
effect of medications prescribed to
ESRD patients, including �-blockers
and benzodiazepines. Several treat-
ments aimed at resynchronizing the
sleep-wake rhythm in hemodialysis pa-
tients result in some level of sleep im-
provement.57 These include a switch to
nocturnal hemodialysis, lowering the
temperature of the dialyzate, exercise
during dialysis, administration of mel-
atonin, or exogenous erythropoietin
treatment. Bright light therapy might
also benefit hemodialysis patients with
circadian sleep disruption.57

Circadian Influence on Renal
Function
In addition to a role for the kidney in main-
taining proper BP rhythms, renal function
oscillates in a circadian manner with daily
fluctuations in renal blood flow and GFR58

and the excretion of electrolytes such as so-
dium and potassium.59 Likewise, urinary
excretion of phosphate, magnesium, and

acid oscillates with a circadian pattern.60,61

Although these clinical observations have
been well established, the underlying mo-
lecular mechanisms are unclear.

MOLECULAR EVIDENCE FOR THE
ROLE OF A CIRCADIAN CLOCK IN
THE KIDNEY

Transcriptional Regulation of Renal
Gene Expression by the Circadian
Clock
A growing number of genes are regulated
by transcriptional mechanisms of the cir-
cadian clock. Many clock-controlled genes
have been identified in the kidney through
either gene expression profiling or candi-
date gene approaches (Table 1). The term
“clock-controlled gene” is used here to de-
scribe genes that exhibit rhythmic expres-
sion. Most of the genes listed in Table 1
have only recently been linked to the circa-
dian clock, and it remains to be determined
whether circadian clock proteins interact
with E-box elements in the promoters of
these genes.

These genes encode products that
range from transcription regulators62

to cell junction proteins.63,64 Although
the implications of clock-mediated
regulation of these genes are not yet
clear, it is interesting that the function
of the transcription repressor, Kid-1
(kidney, ischemia, developmentally-
regulated gene 1),65 is linked to regula-
tion of extracellular signal-regulated
kinases,66 providing an intriguing link
between a clock-controlled gene and
signal transduction in the kidney. Fur-
thermore, the rhythmic expression of
E-cadherin and claudin-4 seemed to
parallel the circadian changes observed
in sodium excretion.63

The circadian clock gene Period 1
(Per1) was identified as a novel aldoste-
rone target in a murine inner medullary
collecting duct cell line and was the most
highly induced transcript in the entire
study.67 Per1 contributes to the basal and
aldosterone-dependent transcription of
Scnn1a, which encodes the rate-limiting
subunit of the epithelial sodium chan-
nel.68 Scnn1a expression is reduced in the
renal medulla of Per1 null mice. Per1-
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null mice excrete more urinary sodium
than wild-type mice, although the mech-
anism of this effect is unknown. The ap-
parent circadian expression of Scnn1a is
also altered in mice lacking all three Pe-
riod genes compared with wild-type
mice. Given the critical role of the rate-
limiting subunit of the epithelial sodium
channel in sodium transport and BP
control, these results implicate the clock
in the mechanism underlying the known
daily fluctuations in sodium excretion
and BP.

Many renal transport genes have
been identified as clock-controlled
genes (Table 2). NHE3 was the first
transporter in the kidney to be identified
as a target of the clock transcription
mechanism.69 mRNA encoding NHE3 is
expressed in a circadian manner in wild-
type rodents, but rhythmic expression is
blunted in Cry1/Cry2-null mice. A spe-
cific E-box response element is required
for Bmal1/Clock-mediated transactiva-

tion of NHE3 promoter activity. Consis-
tent with this observation is a recent re-
port describing the presence of an E-box
in the Scnn1a promoter that is bound by
Clock and Per1.70 Together these studies
provide direct molecular evidence for
regulation of transport gene expression
by the circadian clock.

In the first study of its kind, Zuber et
al.64 used microarray analysis to profile the
expression of circadian genes in microdis-
sected distal nephron and collecting duct
segments over a 24-hour period. Hun-
dreds of putative clock-controlled genes
were identified. Circadian expression of se-
lected genes was confirmed in independent
samples, and these genes are included in
Tables 1 and 2. These novel clock targets
encode moieties ranging from known reg-
ulators of sodium transport to critical reg-
ulators of water balance. Many of the genes
listed in Table 2 are expressed in principal
cells of the cortical collecting duct, and the
products of these genes contribute to so-

dium and water transport (Figure 2). Fur-
ther study will likely identify additional
clock-controlled genes, providing addi-
tional insight into the mechanism by
which the circadian clock regulates water
and electrolyte transport in the kidney.

Rodent Models of Circadian
Disorganization
Casein kinase I�-mediated phosphoryla-
tion controls stability of the Period pro-
teins. tau mutant hamsters have a gain-of-
function mutation in casein kinase I� and
display a shortened circadian period.
Heterozygous tau mutants display a severe
cardiorenal phenotype characterized by
cardiomyopathy, hypertrophy, cardiac fi-
brosis, and early death71; renal dysfunction
is manifested as proteinuria, tubular dila-
tion, glomerular ischemia, and cellular ap-
optosis. SCN ablation in young adult tau
mutant hamsters rescues the cardiac hy-
pertrophy phenotype. Moreover, the car-
diorenal phenotype is reversed and longev-
ity is restored when the tau mutants are
maintained on a shorter 22-hour light/
dark cycle.

The mouse renin transgenic rat [TGR(m-
REN2)27] is also a well-characterized model
of hypertension. These animals have an in-
verted circadian BP profile and consequent
end-organ damage.72 TGR rats exhibit a pro-
foundcircadianphenotype inwhichthenor-
mal circadian pattern of core clock gene ex-
pression, signal transduction pathways, and
sympatheticnervoussystemactivityisaltered
severely.73 Consistent with human studies
discussedabove, therenin-angiotensin-aldo-
sterone system contributes to maintenance
of circadian rhythms in rodents.

Reports of BP phenotypes in rodents

Table 1. Clock-controlled genes in the kidney

Gene Function RNA Source Reference

Dec1 bHLH transcription factor Whole kidney 59

Dec2 bHLH transcription factor Whole kidney 59

Npas2 bHLH transcription factor Whole kidney 59

Dbp Albumin Dsite binding protein Whole kidney 59

Cldn4 Claudin 4,Tight junction protein Whole kidney 60

E-cadherin Adherens junctions Whole kidney 60

Kid-1 Zn finger transcription repressor Whole kidney 63

Cldn8 Claudin 8, Tight junction protein DCT, CNT 61

Mapre2 Microtubule associated protein DCT, CNT, CCD,
whole kidney

61

Ptges Prostaglandin E synthase DCT, CNT 61

Tfrc Transferrin receptor DCT, CNT, CCD,
whole kidney

61

bHLH, basic helix-loop-helix; DCT, distal convoluted tubule; CNT, connecting tubule; CCD, cortical
collecting duct.

Table 2. Clock-controlled transport genes in the kidney

Gene Function RNA Source Reference

Slc9a3 (NHE3) Sodium/hydrogen exchange Whole kidney 66

Gilz Leucine zipper protein/regulation of sodium transport DCT, CNT, CCD. Whole kidney 61

Usp2 Ubiquitin specific protease/regulation of sodium transport DCT, CNT, CCD. Whole kidney 61

V1aR Vasopressin receptor/regulation of water balance DCT, CNT, CCD. Whole kidney 61

V2R Vasopressin receptor/regulation of water balance DCT, CNT, CCD. Whole kidney 61

Slc6a6 Taurine transporter CCD 61

Slc6a9 Glycine transporter DCT/CNT 61

Aqp2 Water channel CCD 61

Aqp4 Water channel CCD 61

Scnn1a (�ENaC) Alpha subunit of epithelial sodium channel Cortex, outer medulla and inner medulla 65

DCT, distal convoluted tubule; CNT, connecting tubule; CCD, cortical collecting duct.
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with circadian clock disruption suggest
that the clock is critical for cardiovascu-
lar function. Whereas Clock-null mice
maintain a normal 24-hour rhythm of
BP, the average mean arterial pressure
and mean systolic BP were significantly
lower in these mice compared with wild
type.64 These mice display altered rhythms
in urinary sodium excretion and a mild di-
abetes insipidus.

When maintained on a standard 12-
hour light/dark cycle, Per2 mutant mice
exhibit decreased 24-hour diastolic BP, in-
creased heart rate, and a decreased differ-
ence between day and night BP.71 Under
constant darkness, wild-type mice main-
tained normal 24-hour rhythms in BP, ac-
tivity, and heart rate, but Per2 mutant mice
experienced a shortened circadian period.

Salt-sensitive hypertension was ob-
served in Cry1/Cry2 knockout mice.75 El-

evated plasma aldosterone levels were
observed in these mice, leading the inves-
tigators to perform microarray analysis
of adrenal glands from Cry1/Cry2-null
mice compared with wild type. Hsd3b6, a
dehydrogenase-isomerase in the aldoste-
rone synthesis pathway, was identified as
a highly overexpressed gene in null mice.
Increased activity of this enzyme was re-
corded in Cry1/Cry2 knockout mice and
was linked to the observed salt-sensitive
hypertension. Importantly, this study iden-
tifiedaputativetarget for interventional ther-
apy in hypertensive patients. Given that the
HSD3B6 enzyme catalyzes a relatively early
reaction in the steroid hormone synthesis
pathway (pregnenolone to progesterone), it
will be interesting to see what other steroid
hormonesareelevatedinthesemiceandhow
this defect influences the long-term health of
these circadian mutant animals.

THE FUTURE

A critical issue is what proportion of circa-
dian fluctuations in renal function is
caused by the influence of the central clock
in the SCN versus an intrinsic clock in the
kidney alone. Renal tissue explants from
Per2/luciferase transgenic mice oscillate in
culture, and this effect is maintained after
SCN ablation.10 Uncoupling of the periph-
eral clocks from the central clock by food
restriction is another way to address this
issue. Reversal of the light/dark cycle and
the feeding schedule causes a phase shift in
the expression of clock genes in rat kid-
ney.76 Per1 and Clock appeared to be the
most sensitive to these changes. An impor-
tant tool in determining the role of the
clock in individual tissues is the generation
of tissue specific null mice. Indeed, pancre-
as-deficient Bmal1 mice develop diabetes
mellitus,77 and knockout of Clock in cardi-
omyocytes alters the normal circadian
rhythm of cardiac output, heart rate, and
BP.7 Future studies using kidney-deficient
clock genes will be critical to our under-
standing of how the circadian clock regu-
lates renal function.

In addition to the transcriptional and
post-translational regulation of the clock
mechanism discussed above, microRNAs
(miRNAs), which regulate mRNA stability
and therefore protein expression, may play
a role in the modulation of circadian
rhythms.78 In mammalian cell models,
miRNA-192/194 regulates the expression
of the Period gene family.79 Overexpression
of this miRNA causes a shortened circa-
dian period. Very little is known about
post-translational control of clock proteins
in the kidney,80 and the role of miRNAs in
the renal circadian clock has not been ex-
plored to date. These dynamic processes
likely allow fine-tuning of the clock mech-
anism in a tissue-specific manner.

CONCLUSIONS

Discerning the role of the circadian clock in
thekidneyhasimportantimplicationsforthe
design of novel therapies and improvement
of existing treatments for renal disease. Nu-
merous trials showed that chronotherapy in
the treatment of nondippers is effective in re-

H2O

V1aR

ENaC

V2R

H2O

H2O H2O

Na+

K+ K+

K+

2 K+ 2 K+

K+

Na+

3 Na+ 3 Na+

CI CI
CI CI

SGK1

Nedd4-2

ET-1

Usp2

GILZ

ATP

ADP + Pi

KCC

LUMEN BLOOD

AQP-2

AQP-4

α α
β

γ

Figure 2. Mechanisms of sodium, potassium, chloride, and water transport in a cortical
collecting duct principal cell. Proteins denoted by the symbol are the products of genes
that are expressed in an apparent circadian pattern. Na�, sodium; K�, potassium; Cl�,
chloride; H2O, water; ENaC, epithelial sodium channel; GILZ, glucocorticoid-induced leucine
zipper protein; Usp2, ubiquitin-specific protease 2; SGK1, serum and glucocorticoid-
regulated kinase; ET-1, endothelin-1; Nedd4–2, neural precursor cell expressed, devel-
opmentally downregulated gene 4-like; V1aR, vasopressin 1a receptor; V2R, vasopressin
2 receptor.

BRIEF REVIEW www.jasn.org

602 Journal of the American Society of Nephrology J Am Soc Nephrol 22: 598–604, 2011



storing the normal 24-hour rhythm of BP in
manypatients. Improveduseof24-houram-
bulatory BP monitoring could increase iden-
tification of nondippers that may benefit
from nighttime administration of anti-hy-
pertensive medications. Nighttime dialysis
may benefit patients experiencing circadian
disruption. To identify those patients most
likely to benefit from chronotherapeutic in-
tervention, we must gain a more complete
understanding of the mechanism by which
the circadian clock regulates renal function.
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