Zinc-α2-Glycoprotein Exerts Antifibrotic Effects in Kidney and Heart

Inga Sörensen-Zender,* Sagar Bhayana,* Nathan Susnik,* Veronique Rolli,† Sandor Batkai,‡ Arpita Baisantry,*§ Siamak Bahram,† Payel Sen,* Beina Teng,* Robert Lindner,| Mario Schiffer,* Thomas Thum,‡¶ Annette Melk,§ Hermann Haller,* and Roland Schmitt*

Departments of *Nephrology and Hypertension, §Pediatric Kidney, Liver, and Metabolic Diseases, and ‡Cell Biology and †Institute of Molecular and Translational Therapeutic Strategies, Integriertes Forschungs- und Behandlungszentrum Transplantation, Hannover Medical School, Hannover, Germany; †Immunogénétique Moléculaire Humaine, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; and ¶National Heart and Lung Institute, Imperial College, London, United Kingdom

ABSTRACT

Zinc-α2-glycoprotein (AZGP1) is a secreted protein synthesized by epithelial cells and adipocytes that has roles in lipid metabolism, cell cycling, and cancer progression. Our previous findings in AKI indicated a new role for AZGP1 in the regulation of fibrosis, which is a unifying feature of CKD. Using two models of chronic kidney injury, we now show that mice with genetic AZGP1 deletion develop significantly more kidney fibrosis. This destructive phenotype was rescued by injection of recombinant AZGP1. Exposure of AZGP1-deficient mice to cardiac stress by thoracic aortic constriction revealed that antifibrotic effects were not restricted to the kidney but were cardioprotective. In vitro, recombinant AZGP1 inhibited kidney epithelial dedifferentiation and antagonized fibroblast activation by negatively regulating TGF-β signaling. Patient sera with high levels of AZGP1 similarly attenuated TGF-β signaling in fibroblasts. Taken together, these findings indicate a novel role for AZGP1 as a negative regulator of fibrosis progression, suggesting that recombinant AZGP1 may have translational effect for treating fibrotic disease.

Received May 18, 2014. Accepted January 5, 2015.

Published online ahead of print. Publication date available at www.jasn.org.

Correspondence: Dr. Roland Schmitt, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany. Email: schmitt.roland@mh-hannover.de

Copyright © 2015 by the American Society of Nephrology

Fibrosis of the kidney is present in almost all forms of chronic renal disease and has been identified as one of the most crucial determinants of progressive loss of renal function.1 Studying age-dependent differences in renal repair, we observed that mice treated with small interfering RNA (siRNA) against zinc-α2-glycoprotein (AZGP1) were unexpectedly susceptible to kidney fibrosis,2 suggesting a potential link between AZGP1 and the development of fibrosis.

AZGP1 is a secreted glycoprotein that is synthesized by adipocytes and epithelial cells of many organs. First isolated from human plasma, it was later found in other body fluids, such as saliva, sweat, milk, and urine.3,4 The biologic function of AZGP1 is still poorly understood, and although the molecular structure of AZGP1 resembles a secretory form of MHC-I, the protein seems to be devoid of immunologic functions.5 AZGP1 plays a role in lipid metabolism and potentially, cancer cachexia, where it has been described as a lipid-mobilizing factor.6 In agreement, AZGP1 mobilized fat in cultured adipocytes through stimulation of β3-adrenoceptors.7 Furthermore, rodents that were administered exogenous AZGP1 showed increased fat mobilization,8,9 whereas genetic deletion of AZGP1 was associated with increased body fat.5

With the molecular mass of 41 kD, AZGP1 is freely filtered in the glomerulus and subsequently...
cleared by kidney tubular cells through reabsorption and lysosomal degradation.10 Circulating AZGP1 significantly accumulates when renal clearance is disrupted in patients with acute and chronic renal failure.11–13 Stimulated by a uremic environment, adipocytes might secrete more AZGP1, further increasing protein levels.14 However, the functional effect of elevated AZGP1 levels in renal disease remains unclear. Because AZGP1 was inversely associated with proatherogenic factors and oxidative stress in patients undergoing hemodialysis, Leal et al.15 suggested that it might act as a cardiovascular protective factor in this patient population.

Similar to other organs, kidney fibrosis is characterized by a dedifferentiation of epithelial cells and an activation of interstitial fibroblasts. Like in other organs, the single most important mediator of kidney fibrosis is TGF-\(\beta\).16 The key role of TGF-\(\beta\) in progressive renal disease was underlined by studies of TGF-\(\beta\) blockade and transgenic TGF-\(\beta\) overexpression.17,18 These studies showed that TGF-\(\beta\) can potently disrupt renal cell homeostasis by activating resting fibroblasts into myofibroblasts, which produce excessive amounts of collagen and other extracellular matrix components.1,16 In parallel, sustained TGF-\(\beta\) signaling promotes fibrosis progression by inducing the dedifferentiation of parenchymal epithelial cells and an activation of interstitial fibroblasts. Like in other organs, AZGP1 has been shown to promote epithelial cell differentiation and stabilization during carcinogenesis.20–23 Along these lines, AZGP1 was linked to inhibition of TGF-\(\beta\)–mediated dedifferentiation in pancreatic cancer cells.24 On the basis of these data, we tested the hypothesis that AZGP1 negatively regulates the development of organ fibrosis.

RESULTS

AZGP1 Deficiency Exacerbates Experimental Kidney Fibrosis

On the basis of our previous data,2 we hypothesized that AZGP1 inhibits profibrotic processes in the kidney. To test this hypothesis, we induced experimental renal fibrosis in AZGP1-deficient mice. So far, the only phenotypical difference found in these mice was a moderately increased body weight combined with a reduced lipolytic activity.5 To minimize potentially confounding effects of this phenotypical difference, we used heterozygous littermates (AZGP1+/−) as controls instead of wild-type (AZGP1+/+) mice in most experiments. AZGP1+/− mice did not differ significantly from AZGP1+/− mice in body weight, kidney function, and triglyceride levels (Supplemental Figure 1, A–D). AZGP1+/− showed global AZGP1 expression at a level of approximately 50% of AZGP1+/+ mice (Supplemental Figure 1, E and F), and there were no discernable differences in renal expression levels of E-cadherin and vimentin, suggesting a similar tubulointerstitial composition between unstressed AZGP1+/− and AZGP1+/− kidneys (Supplemental Figure 1, G and H).

Mice were subjected to two well established experimental models of renal tubulointerstitial fibrosis: aristolochic acid nephropathy (AAN) and unilateral ureteral obstruction (UOO). In both models, kidneys of AZGP1−− mice had more tubular damage and increased tubulointerstitial matrix expansion compared with AZGP1+/− kidneys (Figure 1, A and C). In UOO, AZGP1 deletion was associated with a more severe loss of intact tubular brush border membrane, a sign of epithelial damage and dedifferentiation, as shown by reduced Lotus Tetragonolobus Lectin (LTL) staining (Figure 1, B and E). In both models, AZGP1−− kidneys had enhanced deposition of interstitial collagen as reflected by Picrosirius Red staining (Figure 1, C, D, and F).

Figure 1. Genetic deficiency of AZGP1 exacerbates progression of renal fibrosis in UOO and AAN. (A) Representative images of hematoxylin/eosin staining of AZGP1+/− and AZGP1−− kidney sections after 2 weeks of UOO. (B) Representative images showing LTL staining as a marker of intact proximal tubular brush border in UOO kidneys. Representative images of Picrosirius Red staining in (C) bright-field and (D) polarized light at 4 weeks of AAN. (E) Quantification of the LTL-positive area in the outer medulla region of UOO and AAN kidneys. (F) Quantification of birefringent collagen fibers in Picrosirius Red–stained kidney sections after UOO and AAN. UOO was evaluated for all data at 2 weeks, and AAN was evaluated for all data at 4 weeks. Values are given as means±SEMs (n=8 for E and F). Original magnifications, ×200 in A, C, and D; ×100 in B. *P<0.05.
In addition, AZGP1^{−/−} kidneys showed significantly increased interstitial α-Smooth Muscle Actin (αSMA), a marker of fibroblast activation, and enhanced expression of profibrotic Collagen I and vimentin in both models (Figure 2, A–E). No changes were found in the overall numbers of CD45-positive leukocytes and F4/80-positive macrophages. Renal expression of proinflammatory monocyte chemotactic protein-1 (MCP1) was not different, but mRNA levels of IL-1β were significantly higher in AZGP1^{−/−} UUO kidneys (Figure 2, E and F). The expressions of tubular damage markers kidney injury molecule-1 (Kim-1) and neutrophil gelatinase–associated lipocalin (NGAL) were also markedly stronger in AZGP1^{−/−} kidneys (Figure 2, C–E). Additionally, in UUO, there was a significant reduction of expression of the epithelial differentiation marker E-cadherin (Figure 2, B and D). For additional genotype-phenotype correlation, UUO was also performed in wild-type littermates. In the renal analysis, wild-type kidneys showed a mild trend for additional protection compared with kidneys from AZGP1^{+/+} mice, but none of the differences reached statistical significance (Supplemental Figure 2).

Deletion of AZGP1 Exacerbates Experimental Cardiac Fibrosis

To determine whether the observed antifibrotic effects of AZGP1 were also present in other organs, we induced cardiac hypertrophy and fibrosis in AZGP1^{+/+} and AZGP1^{−/−} mice by a thoracic aortic constriction (TAC) model that leads to left ventricular pressure overload. After 4 weeks of TAC, AZGP1^{+/+} and AZGP1^{−/−} mice had significantly increased ventricular mass compared with sham-operated mice (139±9 and 142±5 mg versus 91±12 mg; each P<0.05), but there was no significant difference between the genotypes. Despite similar degrees of hypertrophy, AZGP1^{−/−} hearts had more extracellular matrix deposition, which was indicated by Masson trichrome staining (Figure 3A), and an increased accumulation of collagen, which was evidenced by quantification of Picosirius Red staining (Figure 3, B–D). This was accompanied by a significantly higher abundance of αSMA, Collagen I, and fibronectin in cardiac tissue of AZGP1^{−/−} mice (Figure 3, E and F).

Systemic Treatment with AZGP1 Rescues the Profibrotic Phenotype of AZGP1^{−/−} Mice in UUO

To test whether exogenous application of AZGP1 would rescue the profibrotic phenotype seen in AZGP1^{−/−} mice, recombinant murine AZGP1 was injected into AZGP1^{−/−} animals during UUO. Systemic treatment with 200 μg AZGP1 intravenously (approximately 8 mg/kg) on 5 consecutive days during UUO significantly attenuated profibrotic changes in AZGP1^{−/−} kidneys, preserving the integrity of tubular brush border membranes (Figure 4A), suppressing the expression of profibrotic αSMA and Collagen I (Figure 4B), and reducing expression of tubular damage markers Kim-1 and NGAL to levels only slightly higher than in AZGP1^{+/+} controls (Figure 4B).

AZGP1 Attenuates TGF-β–Induced Effects in Renal Tubular Cells and Renal Fibroblasts

TGF-β is the single most important mediator of fibrosis in the kidney and other organs, exerting its detrimental effect by inducing epithelial dedifferentiation and activating local fibroblasts. To test whether the antifibrotic effects of AZGP1 might be explained through TGF-β antagonism, AZGP1 was overexpressed in cultured murine proximal tubular (mPT) cells that were challenged with TGF-β. On addition of TGF-β, AZGP1-overexpressing cells showed sustained E-cadherin expression and did not express vimentin, indicating...
an inhibition of TGF-β–induced epithelial dedifferentiation (Figure 5, A and B).

Fibroblasts do not express AZGP1 but are exposed to it through local and systemic secretions. To mimic this situation, conditioned medium from AZGP1–overexpressing mPT cells was transferred to normal rat kidney fibroblasts (NRK-49Fs). When fibroblasts were subsequently stimulated with TGF-β, the typical profibrotic cell activation as mirrored by upregulation of Collagen I, fibronectin, and αSMA was significantly inhibited (Figure 5, C and D). The same effect was found when fibroblasts were exposed to purified recombinant human (Figure 5E) or recombinant murine AZGP1 (Supplemental Figure 3A).

AZGP1 Inhibits TGF-β Signaling by an Endocytosis-Dependent Mechanism

To elucidate the mechanism behind AZGP1 antagonism of the TGF-β pathway, we performed luciferase assays of the Smad promoter, revealing less TGF-β–induced transcription activity in the presence of AZGP1 (Figure 6A). Consistently, there was reduced TGF-β–induced phosphorylation of Smad2 and Smad3, whereas the mild increase in Smad1/Smad5/Smad9 phosphorylation was not significantly altered (Figure 6B). We also found that AZGP1 suppressed TGF-β–dependent extracellular signal–regulated kinase (ERK) phosphorylation, whereas it had no effect on basal ERK activation (Figure 6C). To test the possibility that AZGP1 antagonizes TGF-β by direct binding or competitive blocking of its receptor, coimmunoprecipitation studies were performed but failed to show any protein–protein interaction (Supplemental Figure 3, B and C). Similarly, propranolol blockade of the only described putative receptor of AZGP1, the β3-adrenergic receptor (β3-AR),25 had no significant effect on AZGP1-induced changes in fibroblasts (Supplemental Figure 3, D and E). Confocal microscopy revealed that fluochrome-labeled AZGP1 was readily internalized into renal fibroblasts (Figure 6D). Internalization was significantly diminished after preincubation with genistein, a tyrosine kinase inhibitor, which is often used to block caveolin-dependent endocytosis (Figure 6, E and F). More specific inhibition using caveolin-1 siRNA also resulted in a reduction in AZGP1 uptake (Figure 6, G–I). Diminished internalization of AZGP1 after genistein treatment and caveolin-1 knockdown was paralleled by an attenuated TGF-β

Figure 3. Genetic deficiency of AZGP1 exacerbates progression of cardiac fibrosis in the TAC model. (A) Representative images of Masson trichrome–stained heart sections from AZGP1+/− and AZGP1−/− mice after 4 weeks of TAC. (B) Representative images of Picrosirius Red staining in (B) bright-field and (C) polarized light microscopy. (D) Quantification of Picrosirius Red birefringent signal. (E) Representative Western blots of αSMA and Collagen I in cardiac tissue of AZGP1+/− and AZGP1−/− mice at 4 weeks of TAC. (F) Quantitative RT-PCR for fibrosis genes at 4 weeks of TAC. Values are given as means±SEMs (n=8 for each data point in D and F). Original magnifications, ×200 in A; ×400 in B and C. *P<0.05; **P<0.005. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
Inhibitory effect of AZGP1 (Figure 6, J–M). These results suggest a link between endocytosis and AZGP1-dependent antagonism of the TGF-β pathway.

AZGP1 in Patient Sera Exerts TGF-β Inhibitory Effects

To test the hypothesis that serum AZGP1 might confer antifibrotic effects, we used sera from patients with ESRD, which have particularly high levels of circulating AZGP1.11–13 Fibroblasts that were exposed to medium supplemented with ESRD serum showed a markedly lower TGF-β response (Figure 7A). When AZGP1 levels were reduced by antibody-mediated depletion (Figure 7B), the inhibitory effect of ESRD serum was significantly attenuated (Figure 7A). These findings suggest that circulating AZGP1 in patient sera may act as a negative regulator of the TGF-β pathway, which suggests that individual AZGP1 levels could change the susceptibility to profibrotic disease processes.

DISCUSSION

In this study, we characterized AZGP1 as a negative regulator of TGF-β–induced effects in renal epithelial cells and renal fibroblasts. We found that genetic deletion of AZGP1 aggravated kidney and heart fibrosis in experimental injury models. This destructive phenotype was rescued by exogenous administration of recombinant AZGP1. Cell culture assays revealed that TGF-β antagonistic effects of AZGP1 were linked to endocytosis and also found in patient sera. Together, these findings introduce AZGP1 as a novel player in the balance of the epithelial-interstitial homeostasis.

One of the main observations of this study was that AZGP1 attenuated TGF-β–induced epithelial dedifferentiation and fibroblast activation, which are common features of organ fibrosis and cancer progression.26 Enhanced tumor progression has been shown to correlate with lower expression of epithelial AZGP1.20–23 Kong et al.24 found that AZGP1 expression can preserve epithelial integrity by promoting mesenchymal-to-epithelial transition in pancreatic cancer cells. Congo et al.24 attributed the prodifferentiation effects of AZGP1 to TGF-β antagonistic properties. We observed similar anti-TGF-β effects of AZGP1 in renal epithelial cells. Additionally, we found that AZGP1 attenuated TGF-β–induced activation of fibroblasts. These cell culture findings were congruent to our findings in knockout mice. Genetic AZGP1 deletion was associated with a more pronounced loss of epithelial differentiation and enhanced activation of fibroblasts in kidneys stressed by AAN or UUO. Both AAN and UUO importantly involve the TGF-β pathway.27,28 AZGP1-deficient mice were also more severely affected by TAC-induced cardiac fibrosis, which is also driven by TGF-β.29 Together with our cell culture results, these findings suggest that AZGP1 acquires its antifibrotic properties through inhibition of pathologic TGF-β pathway activation. In accordance with this, we found that physiologically low levels of TGF-β were associated with an inconspicuous baseline phenotype in unstimulated AZGP1–deficient mice. Importantly, there was no significant difference between UUO kidneys from wild-type and AZGP1+/− mice, suggesting that a 50% reduction of normal AZGP1 is still compatible with an appropriate renal response to fibrotic stress.

A growing number of clinical studies suggesting that AZGP1 plays a role in many different cancers20–22 implies that our data might be relevant to the field of oncology. If it is correct that AZGP1 exerts antitumor effects through inhibition of TGF-β,24 AZGP1-deficient mice would be expected to have a higher susceptibility for tumor progression. The fact that we did not observe pathologic tumor formation argues against a pivotal role in cancer regulation. However, it is possible that antitumor effects of AZGP1 only become relevant in a tumor microenvironment containing increased TGF-β levels. In this context, it is important to keep in mind that TGF-β can also act as a tumor suppressor, possibly repressing carcinogenesis at early stages.30 Therefore, the TGF-β inhibitory effect of AZGP1 might be heterogeneous in cancer development, which should be explored in experimental studies.

AZGP1 is a glycoprotein secreted by most epithelial tissues, reaching a considerable serum concentration of 40–70 μg/ml
AZGP1 has important anti-fibrotic properties. Furthermore, increasing circulating AZGP1 by injection of recombinant protein during UUO rescued the profibrotic phenotype of AZGP1-deficient mice. Although the situation in various human diseases is likely to be more complex, our data suggest that patients with lower AZGP1 levels might have increased responsiveness to TGF-β and a higher susceptibility for fibrosis. This hypothesis is supported by a study by Gangadharan et al., showing a significant negative correlation between circulating AZGP1 levels and the degree of liver fibrosis in patients with hepatitis C. Along these lines, our data are compatible with the notion that increased levels of AZGP1 may have a protective function in patients with ESRD. In this patient population, volume expansion and pressure overload trigger progressive cardiomyopathy, contributing to an exceedingly high risk for cardiovascular events and heart failure. We found that AZGP1 may limit myocardial fibrosis in a model of experimental pressure-overload cardiomyopathy. It is, thus, conceivable that AZGP1 may partially counterbalance detrimental effects of ESRD-associated factors, such as pressure overload and circulating molecules of the uremic milieu (e.g., fibroblast growth factor 23 or parathyroid hormone), which promote abnormal myocardial morphology and cardiac fibrosis.

Mechanistic information regarding the molecular mode of action of AZGP1 is controversial. In adipocytes, it has been suggested that AZGP1 elicits lipolytic effects through β3-AR stimulation. However, newer results failed to confirm typical β3-AR agonist characteristics. In our analysis, we were unable to establish a link between AZGP1 and β3-AR. Instead, we found that AZGP1 attenuated TGF-β–induced canonical Smad2 and Smad3 signaling. AZGP1 also inhibited TGF-β noncanonical ERK phosphorylation, mirroring findings by Kong et al. Additionally, we observed that blockade of AZGP1 internalization by genistein or caveolin-1 knockdown resulted in a significant reduction of TGF-β inhibition. Additional studies will be necessary to elucidate the underlying mechanisms that regulate this interplay.

Taken together, our data suggest that AZGP1 is a novel player in the complex regulation of TGF-β signaling, inhibiting uncontrolled epithelial dedifferentiation and attenuating fibroblast activation. Consequently, AZGP1-deficient mice are susceptible to the development of renal and cardiac fibrosis. Our study was restricted to kidney and heart fibrosis, but AZGP11 might have similar anti-fibrotic effects in other organs. These findings open up the possibility that recombinant AZGP1 may represent a potential novel strategy for antifibrosis therapy.
CONCISE METHODS

UUO

AZGP1-deficient mice were generated and genotyped as previously described.5 Male wild-type, AZGP1-deficient, and heterozygote littermates (10–12 weeks old) were subjected to UUO as previously reported (n=8 for each condition and group).41 Mice were anesthetized and underwent left proximal ureteral ligation through a midline abdominal incision. Mice were euthanized 7 or 14 days after UUO, and kidneys were analyzed. Representative slices of each kidney (including cortex and medulla) were frozen in liquid nitrogen or fixed in 4% paraformaldehyde (PFA). For the rescue experiment, AZGP1-deficient mice were treated with systemic injections of AZGP1 (200 μg intravenously; approximately 8 mg/kg) on 5 consecutive days. For functional studies, blood samples were taken, and renal function was estimated by serum creatinine and urea measurements as well as measurement of triglycerides using an automated method (Beckman Analyzer; Beckman Instruments GmbH, Munich, Germany). All experimental procedures were in agreement with institutional and legislator regulations and approved by the local authorities.

AAN

For AAN, 10 mg/kg aristolochic acid (Sigma-Aldrich, St. Louis, MO) was injected intraperitoneally into male 10- to 12-week-old mice as previously described (n=8 for each condition and group).42 The control group was injected with the vehicle solution comprising of DMSO. Mice were euthanized 28 days after injection. Representative slices of each kidney (including cortex and medulla) were frozen in liquid nitrogen or fixed in 4% PFA.

Cardiac Fibrosis (TAC Model)

A cardiac fibrotic response was induced by a model of cardiac pressure overload caused by TAC as previously described (n=8 for each condition and group).43 Male AZGP1-deficient mice and heterozygote littermates (10–12 weeks old) were used for this purpose. Sham-operated animals served as controls. Hearts were explanted after 4 weeks of TAC and prepared for histologic and biochemical analysis.

Histologic and Immunohistochemical Staining

Obstructed and contralateral kidneys were dissected, fixed in 4% PFA, and embedded in paraffin. Four-micrometer sections were used for hematoxylin/eosin staining, Picrosirius Red staining, and immunohistochemistry. Immunohistochemistry was performed using the following primary antibodies: rat anti-mouse F4/80 (Serotec, Oxford, UK), mouse anti-αSMA, clone 1A4 (Sigma-Aldrich), rat anti-mouse CD45 (BD Bioscience), and anti-Collagen I (Calbiochem, Darmstadt, Germany). Biotinylated LTL was purchased from Vector Laboratories (Burlingame, CA). Deparaffinized kidney sections were boiled for 20 minutes in citrate buffer for antigen-retrieval, blocked with 5% milk, and incubated overnight with primary antibodies. Staining was visualized with Alexa 488/Alexa 547 secondary antibodies (Molecular Probes/Invitrogen, Carlsbad, CA). Staining was visualized with Alexa 488/Alexa 547 secondary antibodies (Molecular Probes/Invitrogen, Carlsbad, CA).}

CONCISE METHODS

UUO

AZGP1-deficient mice were generated and genotyped as previously described.5 Male wild-type, AZGP1-deficient, and heterozygote littermates (10–12 weeks old) were subjected to UUO as previously reported (n=8 for each condition and group).41 Mice were anesthetized and underwent left proximal ureteral ligation through a midline abdominal incision. Mice were euthanized 7 or 14 days after UUO, and kidneys were analyzed. Representative slices of each kidney (including cortex and medulla) were frozen in liquid nitrogen or fixed in 4% paraformaldehyde (PFA). For the rescue experiment, AZGP1-deficient mice were treated with systemic injections of AZGP1 (200 μg intravenously; approximately 8 mg/kg) on 5 consecutive days. For functional studies, blood samples were taken, and renal function was estimated by serum creatinine and urea measurements as well as measurement of triglycerides using an automated method (Beckman Analyzer; Beckman Instruments GmbH, Munich, Germany). All experimental procedures were in agreement with institutional and legislator regulations and approved by the local authorities.

AAN

For AAN, 10 mg/kg aristolochic acid (Sigma-Aldrich, St. Louis, MO) was injected intraperitoneally into male 10- to 12-week-old mice as previously described (n=8 for each condition and group).42 The control group was injected with the vehicle solution comprising of DMSO. Mice were euthanized 28 days after injection. Representative slices of each kidney (including cortex and medulla) were frozen in liquid nitrogen or fixed in 4% PFA.

Cardiac Fibrosis (TAC Model)

A cardiac fibrotic response was induced by a model of cardiac pressure overload caused by TAC as previously described (n=8 for each condition and group).43 Male AZGP1-deficient mice and heterozygote littermates (10–12 weeks old) were used for this purpose. Sham-operated animals served as controls. Hearts were explanted after 4 weeks of TAC and prepared for histologic and biochemical analysis.

Histologic and Immunohistochemical Staining

Obstructed and contralateral kidneys were dissected, fixed in 4% PFA, and embedded in paraffin. Four-micrometer sections were used for hematoxylin/eosin staining, Picrosirius Red staining, and immunohistochemistry. Immunohistochemistry was performed using the following primary antibodies: rat anti-mouse F4/80 (Serotec, Oxford, UK), mouse anti-αSMA, clone 1A4 (Sigma-Aldrich), rat anti-mouse CD45 (BD Bioscience), and anti-Collagen I (Calbiochem, Darmstadt, Germany). Biotinylated LTL was purchased from Vector Laboratories (Burlingame, CA). Deparaffinized kidney sections were boiled for 20 minutes in citrate buffer for antigen-retrieval, blocked with 5% milk, and incubated overnight with primary antibodies. Staining was visualized with Alexa 488/Alexa 547 secondary antibodies (Molecular Probes/Invitrogen, Carlsbad, CA).
CA) or the ABC Vectastain Kit (Vector Laboratories). For Picosirius
Red staining, deparaffinized kidney sections were stained in Picosi-
rus Red staining solution (Sigma-Aldrich) for 1 hour, washed in
acidified water, and mounted. The staining was analyzed under po-
larized light, considering birefringence as a positive signal. Quanti-
fication of F4/80- and CD45-expressing cells was done by counting
the positive cells in 10 randomly chosen, nonoverlapping fields
(×200 magnification) in the outer medulla. αSMA, LTL, and Pico-
sirius Red staining was quantified using Photoshop-based image
analysis (Adobe Photoshop software; Adobe Systems, San Jose, CA).

Western Blot and Coimmunoprecipitation
Western analysis was performed as previously described. In brief, a
representative part of each kidney (kidney slices containing cortical
and medullary tissues) was frozen immediately after harvesting in
liquid nitrogen. Tissue was later homogenized, and after protein elec-
trophoresis, proteins were transferred to polyvinylidene difluoride
membranes, blocked with 5% milk in phosphate buffered saline/
tween, and probed overnight at 4°C with primary antibodies: anti-
αSMA (Sigma-Aldrich), rabbit anti-human KIM-1 (Novus Bio-
logicals, Littleton, CO), goat anti-mouse Lipocalin2/NGAL (R&D
Systems, Minneapolis, MN), rabbit anti-human E-Cadherin (Santa
Cruz Biotechnology, Santa Cruz, CA), rabbit anti-human Vimentin
(Santa Cruz Biotechnology), rabbit anti-human Fibronectin (Santa
Cruz Biotechnology), rabbit anti-rat-ERK1/2 (p44/42 mitogen-activated
protein kinase), rabbit anti-human phospho-ERK1/2 (phospho-
p44/42 mitogen-activated protein kinase; Cell Signaling Technology,
Danvers, MA), rabbit anti-Smad2 (Cell Signaling Technology), rabbit
antiphospho-Smad2 (Cell Signaling Technology), rabbit anti-Smad3
(Cell Signaling Technology), rabbit antiphospho-Smad3 (Cell Sig-
naling Technology), rabbit anti-Smad5 (Cell Signaling Technology),
rabbit antiphospho-Smad1/5/9 (Cell Signaling Technology), goat anti-
mouse AZGP1 (Zag [E-20]; Santa Cruz Biotech-
nology), and mouse anti-human AZGP1 (Zag
[1D4]; Santa Cruz Biotechnology). horseradish
peroxidase–conjugated secondary antibodies were purchased from Santa Cruz Biotechnology.

Antibody binding was visualized by chemilumi-
nescence (SuperSignal West Pico Chemilumines-
cent; Thermo Fisher Scientific, Rockford, IL). Rabbit anti-mouse glyceraldehyde-3-phosphate
dehydrogenase (Sigma-Aldrich) was used as an
internal loading control and normalization of
protein quantification. For coimmunoprecipita-
tion, protein lysate was incubated overnight with
anti-AZGP1 (H-123 and E-20), anti-TGF-β, and
anti–TGF-β receptor-II antibody (Santa Cruz
Biotechnology) followed by the addition of Pro-
tein G PLUS-Agarose beads (Santa Cruz Biotech-
nology) for 4 hours at 4°C. Beads were washed
and boiled in 4× gel-loading dye and analyzed by
immunoblotting for anti-AZGP1, anti–TGF-β,
and anti–TGF-β receptor-II antibody (same anti-
bodies as for immunoprecipitation).
instructions. Firefly luciferase activity was normalized to cotransfected Renilla luciferase activity (pRL-TK; Promega).

Production and Purification of AZGP1
HEK293-F cells were seeded in FreeStyle Medium (Gibco; Life Technologies, Carlsbad, CA) and transfected with expression vector containing mouse AZGP1. Harvesting and purification of recombinant AZGP1 was done as previously described by Russell and Tisdale using centrifugal concentrating filters (Amicon, Millipore, MA) with a 10-kD cutoff. Concentrated medium was mixed 1 g per 10 ml diethylaminoethyl cellulose (Sigma-Aldrich) in 10 mM Tris (pH 8.8) to allow binding of negatively charged AZGP1. Diethylaminoethyl cellulose was subsequently centrifuged, and AZGP1 was eluted by adding 10 mM Tris/0.3 M NaCl. The supernatant was concentrated using Amicon centrifugal filters with a cutoff of 30 kD. Protein concentration was measured by Bradford Assay. For in vivo injection, the protein was diluted in 0.9% NaCl. For fluorescent labeling of AZGP1, recombinant mouse AZGP1 was labeled with the Atto 488 Protein Labeling Kit (Sigma-Aldrich) according to the manufacturer’s instructions.

Quantitative Real-Time PCR
RNA was isolated from frozen-to-49F cells and frozen kidney tissue (kidney slices containing cortical and medullary tissue) using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. Reverse transcription was performed with M-MLV Reverse Transcription (Promega). cDNA was used as a template for quantitative PCR. The levels of mRNA expression were determined by quantitative real-time PCR using a Roche Lightcycler 480 System with SYBR green master mix and specific primers: NGAL forward: TGA AGG AAC GTT TCA CCC GCT TTG, NGAL reverse: ACA GGA AAG ATG TAG TGG CAG ACA; KIM-1 forward: AAA CCA GAG ATT CCC ACA CG, KIM-1 reverse: GTC GTG GGT CTT CCT GTA GC; α-SMA forward: GTG CTA TGT CGC TCT GGA CTT TGA; α-SMA reverse: ATG AAA GAT GGC TGG AAG AGG GTC; Collagen I forward: TGT CCC AAC CCC CAA AGA C, Collagen I reverse: TCC TGC ACT CCT ACA TCT GA; Fibronectin forward: CGG TAG GAC CTT CTA TTC CT, Fibronectin reverse: GAT ACA TGA CCC CTT CAT TG; E-cadherin forward: AGT CCC GGC TTC AGT TCC, E-cadherin reverse: CTG TGA TGG TGC CGT CTG T; Vimentin forward: CAC ACG CAC CTA CAG CAC GT T, Vimentin reverse: GTC CAC CGA GTC TTG AAG C; IL-1β forward: AGGTCCACGGGAAA-GACACAGG, IL-1β reverse: GGCTGCTTTCAAACCTTTTGAC; MCP1 forward: TCACTGGTCTGGCCTGC, MCP1 reverse: CAGGCTACTCATTTGAGCATC; and Actin forward: AGC CAT GTA CGT AGC CAT CC, Actin reverse: CTC TCA GCT GTG GTA A. Melting curves were examined to verify that a single product was amplified. For quantitative analysis, all samples were normalized to Actin gene expression using the ΔΔCT (cycle threshold) value method.

Serum Depletion
Sera from 11 patients on maintenance hemodialysis were collected after the long weekly interval as previously described. All patients consented in writing to donating blood for scientific evaluation. The protocol was approved by the Institutional Review Board at Hannover Medical School. AZGP1 was depleted from serum using a standard immunoprecipitation protocol. In brief, serum was incubated with 200 μg/ml AZGP1 antibody (Zag [H123]; Santa Cruz Biotechnology) at 4°C with rotation. Protein A/G Plus beads (Santa Cruz Biotechnology) were added and incubated overnight at 4°C with rotation. Beads were precipitated, and the supernatant was used for the treatment of NRK-49F cells. AZGP1 concentration was determined by ELISA (Zinc-Alpha2 Glycoprotein Human ELISA; Biovendor GmbH, Heidelberg, Germany).

Statistical Analyses
Results are expressed as means±SEMs. Statistical significance among multiple groups was determined by one-way ANOVA tests, with a post hoc Bonferroni test to determine significance between groups. To determine significance for comparisons between two groups, a t test was used. P<0.05 was considered to be statistically significant. Prism 4.0 (GraphPad Software, San Diego, CA) was used to perform statistical tests.

ACKNOWLEDGMENTS
We thank H. Ricci and B. Gewecke for technical assistance.
This work was supported by Deutsche Forschungsgemeinschaft Grant SCHM 2146/3-1 and the 7th Framework Program of the European (FIBROTARGET).
Parts of this work have been presented at the American Society of Nephrology Renal Week, November 16–21, 2010 in Denver, CO.

DISCLOSURES
None.

REFERENCES

This article contains supplemental material online at http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2014050485/-/DCSupplemental.