A Quantitative Approach to Screen for Nephrotoxic Compounds In Vitro

Melanie Adler,*† Susanne Ramm,* Marc Hafner,* Jeremy L. Muhlich,* Esther Maria Gottwald,† Elijah Weber,‡ Alenka Jaklic,‡ Amrendra Kumar Ajay,† Daniel Svoboda,§ Scott Auerbach,¶ Edward J. Kelly,‡ Jonathan Himmelfarb,¶ and Vishal S. Vaidya*†***

*Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts; †Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; ‡Department of Pharmaceutics, University of Washington, Seattle, Washington; §Social and Scientific Systems, Durham, North Carolina; ¶National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; †Kidney Research Institute, Department of Medicine, University of Washington, Seattle, Washington; and **Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts

ABSTRACT

Nephrotoxicity due to drugs and environmental chemicals accounts for significant patient mortality and morbidity, but there is no high throughput in vitro method for predictive nephrotoxicity assessment. We show that primary human proximal tubular epithelial cells (HPTECs) possess characteristics of differentiated epithelial cells rendering them desirable to use in such in vitro systems. To identify a reliable biomarker of nephrotoxicity, we conducted multiplexed gene expression profiling of HPTECs after exposure to six different concentrations of nine human nephrotoxicants. Only overexpression of the gene encoding heme oxygenase-1 (HO-1) significantly correlated with increasing dose for six of the compounds, and significant HO-1 protein deregulation was confirmed with each of the nine nephrotoxicants. Translatability of HO-1 increase across species and platforms was demonstrated by computationally mining two large rat toxicogenomic databases for kidney tubular toxicity and by observing a significant increase in HO-1 after toxicity using an ex vivo three-dimensional microphysiologic system (kidney-on-a-chip). The predictive potential of HO-1 was tested using an additional panel of 39 mechanistically distinct nephrotoxic compounds. Although HO-1 performed better (area under the curve receiver-operator characteristic [AUC-ROC]=0.89) than traditional endpoints of cell viability (AUC-ROC for ATP=0.78; AUC-ROC for cell count=0.88), the combination of HO-1 and cell count further improved the predictive ability (AUC-ROC=0.92). We also developed and optimized a homogenous time-resolved fluorescence assay to allow high throughput quantitative screening of nephrotoxic compounds using HO-1 as a sensitive biomarker. This cell-based approach may facilitate rapid assessment of potential nephrotoxic therapeutics and environmental chemicals.

Drugs and environmental chemicals, such as aminoglycoside antibiotics, analgesics, chemotherapeutic agents, and heavy metals, as well as endemic toxins like aristolochic acid are a common cause of AKI or CKD.1,2 Current approaches to conduct safety and risk assessment of compounds rely predominantly on animal studies, and these results are extrapolated to dose effects in humans despite knowledge that the typical responses of animal models and humans can differ greatly.3 The lack of adequate models to accurately predict human toxicity contributes to an underestimation of the kidney toxic potential of new therapeutic candidates, which also explains why nephrotoxic effects in patients are often only detected during late phase

Received January 15, 2015. Accepted June 16, 2015.

M.A. and S.R. contributed equally to this work.

Published online ahead of print. Publication date available at www.jasn.org.

Correspondence: Dr. Vishal S. Vaidya, Harvard Institutes of Medicine, Rm 562, 77 Avenue Louis Pasteur, Boston, MA 02115. Email: vvaidya@bwh.harvard.edu

Copyright © 2016 by the American Society of Nephrology
clinical trials or, in some cases, after regulatory approval. Additionally, few registered chemicals have been fully assessed for their potential to cause kidney toxicity, while the number of new chemicals being synthesized annually for use in consumer products is increasing rapidly. Given the societal burden of kidney disease and the insensitivity of current methods to detect it, there is an urgent need to develop quantitative, sensitive, and robust methods for predictive assessment of human kidney toxicity.

Advancing early-stage safety assessment of large numbers of compounds, a paradigm shift in toxicology initiated by the Tox21 program, demands moving away from whole animal testing toward less expensive and higher throughput cell-based assays. Currently, there is no in vitro method that can be used in a high throughput manner to identify kidney toxic agents early in the process before reaching humans. Immortalized kidney epithelial cell lines, derived from human kidney (HK-2), pig kidney (LLC-PK1), or dog kidney (MDCK), frequently used for nephrotoxicity studies, do not fully express all the differentiated functions found in their in vivo counterparts due to loss of polar architecture and changes in drug transporter expression. Primary proximal tubular epithelial cells of human origin, being the predominant target of most toxicants in the kidney, are characterized by polarity and junctional assembly of epithelia, brush border enzyme activity, and metabolic and transport capacity. Among the currently available two-dimensional (2D) models, they are the model that comes closest to the ideal with respect to kidney physiology and toxicology studies.

The primary objective of this study was to develop a cell-based approach for safety screening of kidney toxic compounds. Specifically the aims were: to evaluate the structural and functional characteristics of human primary tubular epithelial cells; to identify a translational biomarker that, either alone or in combination with known markers, would enable prediction of risk for kidney toxicity across species and platforms; and to develop a time resolved fluorescence resonance energy transfer (FRET) assay for measuring the biomarker, which would allow improved quantitation of kidney toxicity in a high throughput manner.

RESULTS

Structural and Functional Characterization of Primary HPTECs as a Suitable In Vitro Model for Screening Kidney Toxicity

We structurally and functionally characterized human proximal tubular epithelial cells (HPTECs) to determine whether they exhibit features of a differentiated kidney proximal tubular epithelium. HPTECs expressed zonula occludens 1, cytokeratin 18 (CK18), E-cadherin, and N-cadherin, indicating tight junction assembly and cell polarity (Figure 1A). The cells also showed a consistent expression of kidney-specific cadherin, as well as a wide range of efflux and influx transporters, such as megalin, aquaporin-1, multidrug resistance protein 2 (MRP2), P-glycoprotein (MDR1), and organic cation transporter 2 across different passages and cultivation periods (Figure 1B). These findings correlated well with the RNA expression pattern observed in human kidney (Figure 1B). In contrast, aquaporin-1 and kidney-specific cadherin mRNA were not detected in HK-2 cells, which are immortalized human proximal tubular cells. The development of HPTECs to polarized confluent monolayers on collagen IV coated transwells was evaluated by an increase in transepithelial electrical resistance over 7 d of culture (Figure 1C). Confluent monolayers of HPTECs in well plates also formed typical domes, indicative of transepithelial solute transport (data not shown). Sucrose transport was demonstrated to be active across cell monolayers grown on transwell filters for 7 d as well as in monolayers cultured in well plates (Figure 1D).

Based on a significant cellular efflux of rhodamine 123, a fluorescent MDR1 substrate, we showed that the transporter is functional in HPTECs (Figure 1E). Time and dose-dependent glucose transport (Figure 1F, left panel) could be attributed to Na+-dependent (SGLT) and Na+-independent (GLUT) transport processes (Figure 1F, right panel). Exposure of cells to various concentrations of cadmium chloride (CdCl2) for up to 24 h increased γ-glutamyl-transferase activity and elevated levels of cellular glutathione in a time and dose-dependent manner (Figure 1G). Finally, activity and functionality of mitochondria in HPTECs were demonstrated after treatment with different inhibitors of oxidative phosphorylation, causing either loss of mitochondrial membrane potential (MMP) without production of reactive oxygen species (ROS) (carbonyl cyanide m-chlorophenyl hydrazone), or pronounced production of ROS without affecting the MMP (oligomycin A) (Figure 1H). These data suggest that HPTECs represent a suitable in vitro model as they retain many of the phenotypic as well as functional characteristics of the human proximal tubule.

Identification of HO-1 as a Biomarker for In Vitro Kidney Toxicity

In order to identify a potential biomarker that allows identification of kidney toxic compounds before changes in cell morphology or detectable loss of viability occur, we conducted gene expression profiling by measuring 1000 landmark genes characteristic of the variability of the transcriptome. HPTECs were cultured for 3 d in collagen-coated multwell plates until confluence before treatment with a discovery panel (Supplemental Table 1) consisting of nine structurally and mechanistically distinct kidney toxic compounds (cisplatin, cyclosporin A (CsA), cadmium chloride (CdCl2), aristolochic acid (AA), gentamicin, FK-506, tobramycin, doxorubicin, ochratoxin A) versus the nontoxic compound (carboplatin) at concentrations ranging from 1.6 μM to 20 mM over four different time points (3, 6, 12 and 24 h). Supplemental Figure 1 shows compound-induced changes in phenotype of the cells and loss of cell viability based on ATP concentrations. The
1000 selected transcripts were measured for each sample in a single well of a 384-well plate using Luminex-based technology. For each gene and drug, we calculated the correlation between the dose and the fold change in gene expression at each time point and calculated an empirical P value (Figure 2, A and B, see the methods section for details). Based on all gene–drug pairs, we found that HMOX1 (HO-1, heme oxygenase-1) was the only gene whose overexpression significantly correlated (false discovery rate (FDR) \(<0.01\)) with increasing dose for six of the nine compounds, including AA, CdCl₂, CsA, cisplatin, gentamicin, and FK-506 (Figure 2C). There was no significant increase in HO-1 mRNA expression in response to ochratoxin A, tobramycin, doxorubicin, and the nontoxic compound carboplatin. In addition to HO-1, some apoptotic genes such as GADD45A and PMAIP1, were also upregulated in five of the nine compounds as a consequence of a late toxic effect, indicating decreased cell viability (Figure 2C, Supplemental Figure 1). HO-1 protein levels were significantly increased in a dose-dependent manner following exposure to cisplatin, CsA, CdCl₂, AA, gentamicin, tobramycin, and FK-506 for 24 h (Figure 3A), whereas the highest concentration of some compounds resulted in a temporal response of HO-1 as early as 3 h (Supplemental Figure 2A). HO-1 increase was not directly correlated to an increase in production of ROS, showing that it can also detect compounds whose mechanism of toxicity does not involve oxidative stress (Figure 3B). HO-1 mRNA levels were also found to be upregulated more than 10-fold in human proximal renal tubular epithelial cells purchased from...
Figure 2. HMOX1 differential expression is positively correlated with doses across the highest number of compounds. High throughput gene expression profiling based on the measurement of 1000 genes was performed in human proximal tubular epithelial cells (HPTECs) exposed to a discovery panel of 10 compounds in six different concentrations for 3, 6, 12, and 24 h. (A) For each time point, we calculated the Spearman’s correlation between the six doses and the fold change in mRNA for each gene. A representative example is shown for HMOX1 and cisplatin. The sum of square of the four correlation values is compared with the distribution of values with random data to yield a P value for each pair of gene and compound. Results are shown in a heat map. (B) Based on a cutoff of false discovery rate of 0.05, we ordered genes based on the number of compounds for which gene expression is significantly correlated with dose. HMOX1 is identified as the top gene showing a dose-dependent correlation in six of the nine toxic compounds. Color intensity reflects the average P value for significantly correlated toxicants (the darker, the more significant). (C) Dose and time dependent fold change of...
two different sources (LONZA and ATCC) (Supplemental Figure 2B). Incubation of conventionally used immortalized human kidney cell line (HK-2) with similar concentrations of cisplatin, CdCl$_2$, and AA also showed an increase of HO-1 protein levels; however, gentamicin failed to induce an upregulation of HO-1, and carboplatin (nontoxic control) increased HO-1 concentrations, representing a false positive result (Supplemental Figure 2C).

Translatability of HO-1 as a Biomarker across Species and Platforms

The relevance of HO-1 induction in *in vivo* models of kidney toxicity was assessed computationally by mining two large toxicogenomic databases for HO-1 expression following kidney tubular toxicity. The National Toxicology Program’s DrugMatrix as well as the National Institute of Biomedical Innovation’s Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATES) are the two largest toxicogenomics databases and analysis tools that contain *in vivo* multi-organ rat toxicogenomic data for more than 700 chemicals that are integrated with histopathology and clinical chemistry results from the same animals. As expected,16 Havcr1 (Kim-1) increase (approximately 47-fold, DrugMatrix $P=2.14E-29$, TG-GATES $P=2.12E-11$) was strongly associated with kidney tubular necrosis in both the DrugMatrix and TG-GATES kidney datasets (Figure 4A, Supplemental Material). *Hmox1* was present in both the databases and was upregulated (approximately 2-fold, DrugMatrix $P=3.11E-11$, TG-GATES $P=3.53E-3$) with kidney tubular necrosis and kidney tubular regeneration (Figure 4A, Supplemental Material). Furthermore, *Hmox1* expression in both the DrugMatrix and TG-GATES dataset was positively correlated (using linear regression) with expression of a number of transcriptionally inducible biomarkers described in the literature as potential biomarkers of preclinical kidney toxicity (Table 1).

Translatability of HO-1 increase in cells from 2D systems to three-dimensional (3D) systems was assessed by using *ex vivo* 3D modular microphysiological system (MPS) with human gene expression (z-scored for each gene) for the top four genes of across all 10 compounds. Compounds are ordered for each gene based on the P value of the correlation. A black line separates the compounds with significant correlations from the others, while carboplatin is shown on the right as it serves as a nontoxic control. In addition to HMOX1, an early stress response protein, genes associated with growth arrest and DNA damage (GADD45A), transcriptional regulation of TNF (ZFP36) and apoptosis (PMAIP1) were found to be significantly upregulated in five of nine compounds. Gene expression changes were calculated as mean compared with 0.5% DMSO controls ($n=4$).
kidney proximal tubule derived epithelial cells (Figure 4B). HPTECs self-assemble and recapitulate an in vivo structure and function within the microfluidic chips. Under normal conditions, HPTECs in chips show little to no expression of biomarkers, KIM-1 and HO-1, reflecting absence of injury. Consistent with the results obtained using a 2D system (Figure 3) an extremely robust induction of HO-1 was observed in comparison to a modest increase in KIM-1 after exposure of 25 μM cadmium chloride for 48 h (Figure 4B). Plasma and urinary levels of HO-1 have been shown to be a biomarker for AKI in humans and here we present evidence that HO-1 expression was significantly upregulated in primary HPTECs, as well as in rat kidneys and the 3D human kidney-on-a-chip system following tubular toxicity, thereby extending the relevance of HO-1 as a translational biomarker. In comparison, biomarkers like KIM-1 that have very high sensitivity and specificity to detect kidney toxicity in rodents do not show a consistent upregulation following injury to the human primary proximal tubular epithelial cells (Figure 4B, Supplemental Figure 3).

Potential of HO-1 to Predict Kidney Toxicity In Vitro

In order to further evaluate the robustness and sensitivity of HO-1, we tested an additional validation panel (Supplemental Table 1) of 39 well characterized mechanistically distinct compounds that included nontoxic compounds as well as known human kidney toxicants, acting either by direct proximal tubule toxicity or via secondary mechanisms, such as crystal formation in the tubules. All compounds were analyzed for their ability to significantly alter: the number of total cells; the concentration of ATP in cells; the number of dead cells; and the HO-1 concentration in cells. Plotting the maximal significant deregulation compared with control that could be observed at any given concentration of a drug, we calculated the area under the curve receiver-operator characteristic curve (AUC-ROC) for each of the four assays. Including all nontoxic compounds and compounds directly toxic to the proximal tubule, HO-1 was associated with a similar but slightly higher AUC-ROC (0.89) compared with the three other assays: cell number (0.88), cell viability (0.78) and dead cells (0.86) (Figure 5, A and B). This held true, irrespective of whether nephrotoxins following secondary mechanisms of toxicity were included in the analyses or not.

Figure 4. Increase of HO-1 expression in rats and 3D human kidney microfluidic systems following renal injury. (A) Normalized expression intensity of HMOX1 and HAVCR1 in samples positive (+) for tubular necrosis is higher than samples negative (−) for tubule necrosis in the in vivo toxicogenomic databases (DrugMatrix and Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (TG-GATES)). Each data point represents intensity for a given sample. The bounding box extends from the first to third quartiles, with the central bar indicating the median intensity. Whiskers extend from the ends of the box to the outermost data point that falls within the third quartile+1.5×(interquartile range) and first quartile−1.5×(interquartile range), or to the end of the range. Data points are jittered. (B) Schematic diagram depicting concept of human kidney-on-a-chip. Human proximal tubule epithelial cells (HPTECs) form a confluent tubule in the chip as depicted by the phase contrast of cells and DAPI fluorescent imaging of nuclei. Exposure of HPTECs in the chips with 25 μM CdCl₂ for 48 h resulted in an upregulation of HO-1 depicted by the FITC fluorescent stain. Control devices showed minimal expression of HO-1. KIM-1 expression, absent in untreated devices, marginally increased in response to cadmium chloride in two of four devices.
Our next goal was to develop a high throughput assay to quantify HO-1 in a rapid and cost-efficient manner. We established a fast and simple assay that is based on a time resolved FRET between two epitope distinct anti-human HO-1 antibodies that are labeled either with europium cryptate as the donor fluorochrome or d2 as the acceptor fluorochrome (Figure 6A). Antibodies were optimized to show a high fluorescence signal and differences between the background, negative (untreated cells) and positive (gentamicin, CdCl₂, HO-1 recombinant protein) controls (Figure 6, B and C). The final FRET signal increased significantly following gentamicin and CdCl₂ exposure and was not only significantly higher than DMSO or medium treatment but also 12–20-fold higher in both groups compared with the background. The homogeneous time resolved fluorescence (HTRF) assay was first evaluated and optimized by measuring HO-1 in cell lysates of HPTECs treated with the 10 compounds included in the discovery panel (Supplemental Table 1) in 96-well plates using both traditional ELISA and HTRF. A Spearman’s correlation of 0.96 ($P<10^{-16}$) was observed between the two assays (Figure 6D). HO-1 was then quantified in cells cultured in 384 wells and treated with the 39 compounds of the validation panel (Supplemental Table 1), whereby the HO-1 levels obtained from the HTRF assay in response to most of the compounds, such as 4-aminophenol, amphoterin B, arsenic trioxide, citrinin, lead (II) acetate, omeprazole, rapamycin, rifampin, and tetracycline correlated well with immunofluorescence (Spearman’s Rho=0.62, $P<10^{-15}$, Figure 6E, Supplemental Figure 5). In contrast to immunofluorescence, lack of sensitive methods to determine protein concentrations from cells cultured in mid or high throughput well-plate does not allow a normalization of the results from the HTRF to the protein content. Therefore, we observed a loss of range in HO-1 expression after treatment with 4-N-nonylphenol, doxorubicin, idarubicin, potassium dichromate, and puromycin dihydrochloride especially at higher concentrations showing >80% decrease in the cell viability. Apart from this limitation, this assay is a rapid way to quantify HO-1 in a high throughput manner.

DISCUSSION

One of the major challenges in developing safe and effective agents is the accurate prediction of human toxicity for new drug
candidates and industrial chemicals. An ideal cell culture system for drug screening would incorporate the two most fundamental properties of an \textit{in vitro} approach: characteristics of the cells with respect to mimicking human physiology; and sensitivity, specificity, and robustness of a biomarker to quantitate toxicity. Although some clinically relevant \textit{in vivo} kidney injury biomarkers (KIM-1 and NGAL) are expressed in some proximal tubule lines, their translation to cell-based screening assays has not yet been reported. We did not observe KIM-1 upregulation in HPTECs cultured in 2D consistent with a previous study, or even consistently when HPTECs were cultured in the microphysiological 3D kidney system (Figure 4B), highlighting the need for new biomarkers applicable to \textit{in vitro} as well as \textit{in vivo} and human studies.

We addressed this issue in the current study and report three important advances: (1) HPTECs possess characteristics of differentiated epithelial cells, such as polar architecture, junctional assembly, expression and activity of transporters, ability to synthesize enzymes like glutathione and \(\gamma\)-glutamyltransferase thereby making them desirable to use in \textit{in vitro} systems. (2) Changes in expression of HO-1 were found to be more sensitive in predicting compound toxicity in HPTECs than currently used assays of cell viability and cell death. In addition, we show that the sensitivity and specificity can be improved even further by combining the readout for HO-1 concentration and the total cell number, measured in the same well. (3) A newly developed HTRF
assay to measure HO-1 in a 384 (or 1536) well format was developed to allow rapid, simple, accurate and relatively inexpensive high throughput screening for kidney toxicity, amenable to the Tox21 robotic platform for assessment of chemical-induced toxicity.\(^\text{21,22}\)

HO-1 is ubiquitously expressed in unstressed cells at low levels but is highly induced in response to cell injury mediated by oxidative or proinflammatory stress, heavy metals, ischemia and hypoxia.\(^\text{23,24}\) Its cytoprotective and anti-apoptotic properties are mediated by degradation of the pro-oxidant heme into iron, biliverdin and carbon monoxide via induction of p38 MAPK and PI3K/Akt signal transduction pathways.\(^\text{25}\) In contrast, pronounced chemical or genetic inhibition of basal HO-1 levels is associated with increased cell death and tissue necrosis in models of Alzheimer’s disease and aging.\(^\text{26,27}\) These effects have partly been explained by a lowered antioxidative capacity\(^\text{28}\) and cells being more susceptible to damaging agents during HO-1 inhibition,\(^\text{29}\) a property that has been used to sensitize cells for cancer therapy.\(^\text{30}\) Given that deregulation of HO-1 in HPTECs correlated well with the known toxic effects of the tested compounds in humans, changes in cellular HO-1 might indicate a cellular process to protect from further damage. HO-1 has previously been found to be upregulated in the urine of patients with AKI\(^\text{18}\) or tubulointerstitial damage.\(^\text{31}\) HO-1 expression was significantly upregulated in rat kidneys following tubular toxicity and in the human kidney-on-a-chip system following CdCl2 exposure (Figure 4). Hence, we demonstrate the translatability of the 2D in vitro approach all the way to rats, MPSs and humans.

Two-dimensional monolayer cell culture for organs has advantages of being adaptable to high throughput applications such as small molecule discovery screening experiments,\(^\text{32}\) ‘omics’-based biomarker discovery (Figure 2) or pathway-based risk assessment screening.\(^\text{33}\) However, despite the fact that HO-1 increase was more pronounced and reliable in primary human compared with immortalized kidney cells (Supplemental Figure 2C), the 2D system for kidney suffers from certain limitations. Those include: lack of estimating

Figure 6. Development and evaluation of an homogeneous time resolved fluorescence (HTRF) assay for quantification of HO-1 in a high throughput manner. (A) Scheme of the experimental procedure of HO-1 HTRF assay performed in 384-well plate. When the acceptor labeled antihuman HO-1 antibody and the donor labeled antibody bind to HO-1, the two dyes are brought into close proximity with each other. Excitation of the donor with a light source triggers a fluorescence resonance energy transfer (FRET) toward the acceptor and the emission fluorescence (665 nm) can be detected after incubation for 4 h. This signal is proportional to the amount of human HO-1 present in the cell lysate. (B) Assay optimization based on the signal readout included best antibody pair analysis, serial dilution of the antibodies, time-dependent FRET signal development, cell number, and conditions for lysis of human proximal tubule epithelial cells (HPTECs) using several lysate buffers. Optimized assay revealed a robust signal difference between background, negatives (medium, DMSO) and positives (gentamicin, cadmium chloride). (C) Detection of recombinant human HO-1 protein verified that the HTRF assay results are reproducible. Data are presented from eight independent experiments, measured in duplicate (mean±SD, n=8). Delta F (%) is calculated by the following formula: sample-ratio–ratio background/ratio background). (D, E) Correlation between ELISA versus HTRF, and immunofluorescence versus HTRF performed in different assay formats. (D) Fold change of HO-1 was measured in lysates of HPTECs incubated with 10 compounds in 96-well plates after 24 h (see used concentrations in Figure 3; triplicate per experiment, n=3). (E) HO-1 response was quantified in HPTECs treated with 39 compounds in four concentrations starting from 554 μM (10-fold dilution) in 384-well plate for 24 h (n=4). Results were normalized to DMSO control and plotted as mean fold change.
toxicity of compounds that require metabolism and bioactivation by the liver, for example compounds such as acetaminophen, an analgesic with nephrotoxicity attributed to its hepatic metabolite N-acetyl-p-benzoquinone imine; lack of apical to basolateral polarity when cultured on a flat surface, which might not allow the uptake of certain antiviral drugs therefore misrepresenting its safety, for example OAT1 and OAT3, expressed at the basolateral membrane of proximal tubular epithelial cells mediating the uptake of antiviral agents tenofovir and acyclovir. This lack of basolateral uptake of tenofovir may explain why we did not observe toxic effects in this study. Furthermore, the absence of immune or endothelial cells prevents the assessment of the nephrotoxic potential of immunologically active drugs. For example, the induction of pro-inflammatory cytokines via Toll-like receptors is linked to the development of amphotericin B-induced nephrotoxicity in patients. In our study the effects of amphotericin B on viability and expression of HO-1 in HPTECs was mild even at high doses, possibly because of a missing immune response in the cell culture system. Finally, the absence of flow might impact on the differentiation and function of the cells while preventing shear stress as well as the interactions with circulating molecules. To address some of these limitations the new organs-on-a-chip initiative aims at using microfluidic cell culture devices that contain continuously perfused chambers inhabited by living cells arranged to simulate tissue and organ-level physiology. Although these types of in vitro systems are not amenable to high throughput screening, they may contribute additional orthogonal high content information about the mechanisms of kidney injury.

In summary, in this study we have taken a major step forward from the current approach of using immortalized cell lines and cell viability as an endpoint assay. The use of HO-1 as a translatable, sensitive and specific biomarker that is easy to combine with existing cytotoxicity assays, and the ability to measure HO-1 in 384-well plates using the HTRF assay provides an obvious advantage of scalability over other approaches.

CONCISE METHODS

Cells and Compounds

Primary HPTECs were purchased from Biopredic International (Rennes, France) and were cultured in supplemented DMEM/Hams-F12 with GlutaMAX medium. Human papillomavirus 16 (HPV-16) transformed kidney proximal tubule cells (HK-2) were purchased from ATCC (Manassas, VA) and cultured in keratinocyte serumfree medium. HPTECs were used in passages 3 and 4, HK-2 cells were used in passage 4. The 10 compounds of the discovery panel (Supplemental Table 1) were purchased from Sigma-Aldrich (Saint Louis, MO) and were used in a broad concentration range from 1.5 μM to 20 mM, reflecting their respective toxicity range in *in vitro*. The compound library that was used as a validation panel contained 39 compounds (Supplemental Table 1) and was custom made from Enzo Life Sciences Inc. (Farmingdale, NY). Cells were cultivated for 3 d in 96 or 384-well plates until confluence and then incubated with either a vehicle control (0.5% DMSO) or toxic and nontoxic compounds in multiple concentrations ranging from 0.1 μM to 554 μM for 3, 6, 12 or 24 h using an automatic 384-well pin transfer system or manually. Cell viability based on ATP concentration was measured using the CellTiter-Glo Luminescent assay (Promega). KIM-1 protein was measured in cell lysate and supernatant using microsphere-based Luminox xMAP technology, as described previously.

Live Cell Imaging and Measurement of Oxidative Stress (ROS) and Number of Dead Cells

Drug-induced changes in cell morphology, mitochondrial membrane potential, induction of oxidative stress and number of dead cells were quantified using live cell high content imaging. Briefly, 3 d after seeding in 384-well plates, HPTECs were co-incubated for 45 min with 0.5 μM Hoechst 33342 (Active Motif, Carlsbad, CA) to stain nuclei, 0.1 μM tetramethylrhodamine methyl ester (Molecular Probes, Eugene, OR) to measure changes in MMP, and 5 μM CellROX green reagent (Molecular Probes) to detect ROS. After washing off the fluorescent dyes, cells were incubated with 0.2 μM TOTO-3 iodine (Molecular Probes) to stain cells with impaired plasma membrane (dead cells), and treated with the compounds included in both the discovery panel (six concentrations; 1.5 μM to 20 mM) and the validation panel (six concentrations; 0.1 μM to 1000 μM), as well as mitochondrial toxicants (carbonyl cyanide m-chlorophenyl hydrazone, oligomycin A) and live cell images were taken at 3, 6, 12 and 24 h. Experiments were performed in four biologic replicates with duplicate wells on each plate.

Gene Expression Profiling Using L1000 Platform

HPTECs cultured in 96-well plates were treated with the 10 toxic and nontoxic compounds in the discovery panel (Supplemental Table 1) in six concentrations (1.6 μM to 20 mM) for 3, 6, 12 and 24 h, and lysed with 100 μl of TCL buffer (Qiagen). Cell lysates were added to the well of a TurboCapture 384 plate to perform mRNA isolation and cDNA synthesis in the same well (TurboCapture 384 mRNA kit; Qiagen). High throughput gene expression analysis is based on the measurement of about 1000 transcripts as described previously. Replicates were averaged and values were z-scored across all data. For each pair of gene and drug, Spearman’s correlation Rho1, . . . , Rho6 between the gene expression and the six doses across all four time points (t1, . . . , t4) was calculated. The sum of squares of correlation | Rho|2=Σ |Rho|2 for i=1, . . . , 4 if Rhoi>0 was compared with values of | Rho|2 obtained from the correlation of six random values. The comparison with 5,000,000 random values of | Rho|2 yields an empirical P value. A FDR value was obtained using the Benjamini and Hochberg procedure and gene expression was considered to be significantly positively correlated with drug if FDR<0.01.

Structural Characterization and HO-1 Measurement by Immunofluorescence Staining

Primary antibodies used were mouse anti-zonula occludens-1 (Invitrogen), mouse anti-N-cadherin (BD Transduction), mouse anti-CK18 (CK18; Abcam, Inc., Cambridge, MA), rat anti-E-cadherin (Abcam, Inc.), and mouse anti-HO–1 (BD Transduction). Donkey anti-rat FITC-conjugated antibodies were obtained from Jackson ImmunoResearch, and Alexa Fluor 488 donkey anti-mouse was from Invitrogen. HPTECs were grown on 8-well glass chamber slides...
or 384-well plates, fixed in 4% paraformaldehyde or methanol/acetone (1:1), permeabilized with 0.1% Triton X-100, blocked with 5% donkey serum and incubated with respective primary antibody overnight at 4°C. Four replicates were conducted as two replicates on each of two separate days.

Quantification of HO-1 levels and the total number of cells was performed in 384-well plates using immunofluorescence after incubation with eight concentrations (0.1 μM to 55.4 μM) of each of the 39 compounds included in the validation panel for 24 h. Images (10×, four areas per well) were segmented and quantified using Meta-Express 2.0 (Molecular Devices). The cell scoring module was used to count individual cells (total cells readout) and quantify the level of HO-1 in each cell (% positive cells readout). The readouts for the eight negative control wells on each 384-well plate were averaged to obtain per-plate baseline values for cell count and percentage of HO-1-positive cells. All noncontrol readouts were divided by the appropriate baseline values to obtain normalized values for cell viability (based on cell number) and fold change in HO-1 expression.

HO-1 Measurement by ELISA and HTRF

ELISA
HPTECs or HK-2 cells were lysed in RIPA buffer and the amount of HO-1 in the cell lysates was quantified by DuoSet IC human total HO-1/HMOX1 ELISA kit purchased from R&D Systems Inc. (Minneapolis, MN).

HTRF

The development and optimization process examined best antibody pair analysis, reaction volumes, buffer compositions, cell lysate concentrations and antibody reaction concentrations, and incubation times, with the aim of obtaining a FRET signal following cytotoxicity in HPTECs. A recombinant human HO-1 protein (Abcam, Inc.) was used to generate a standard curve. The best antibody pair showing high Delta F (%) signal between positive and negative lysates was rabbit monoclonal HO-1-antibody (Cell Signaling Technology) labeled with europium cryptate (k) and a d2-conjugated rabbit polyclonal anti HO-1 antibody (Cell Signaling Technology). To detect HO-1 in cell lysates of HPTECs exposed to several compounds, cells were lysed with either 50 μl of Cisbio Lysis Buffer 1 (LB1; Cisbio Bioassays, Bedford, MA) supplemented with 1 × protease inhibitor cocktail (96-well) or 10 μl of 4× LB1 (384-well) and stored at −80°C until use. The HTRF emission at 620 nm and 665 nm wavelengths were measured on the Molecular Devices SpectraMax Paradigm using the standard HTRF protocol after 4 h of incubation. Emission at 620 nm is used as internal reference, while emission at 655 nm is proportional to the amount of HO-1. Data are presented as percentages of Delta F [(665/620 ratio–background ratio)/background ratio].

Semiquantitative and Real-Time PCR

Total RNA was isolated, transcribed into cDNA and quantitative or semiquantitative PCR was performed using primers for specific genes listed in Supplemental Table 2.

Transport Activity and Enzymatic Assays
HPTECs were seeded onto collagen IV-coated 6.5 mm, 0.4 μM pore size 24-well Transwell inserts (Corning Life Science) at a density of 2.5×10⁴ cells/well. Cells were incubated with either apically or basolaterally applied [¹⁴C]-sucrose at a concentration of 100 nCi/ml for up to 60 min. An aliquot of 50 μl was removed from the apical and basolateral chamber after 7, 15, 30, and 60 min and the flux was measured using a Beckman scintillation counter. Time and dose-dependent uptake of glucose was measured after incubation of cells with 100, 200, or 500 μM of the fluorescent substrate 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) over the course of 120 min in 96-well plates. Competitive inhibition of SGLT activity was determined in transwell plates after incubation with 250 μM 2-NBDG for 1 h in the presence or absence of 1000 μM phlorizin (SGLT inhibitor) in Na+ and Na+ free buffers. Inhibition of Na+-independent, facilitative transporter activity (GLUT) was shown after pretreatment of HPTECs for 10 min with 50 mM cytochalasin B (SGLT inhibitor) followed by 1 h incubation with 250 μM 2-NBDG in Na+ and Na+ free buffers. The fluorescence intensity of 2-NBDG was measured at excitation and emission wavelengths of 485 nm and 528 nm, respectively, using a Synergy1H microplate reader (BioTek Instruments, Inc.). Eflux of rhodamine 123 across cell monolayers was measured by incubation of the cells with 0.5 μg/ml substrate for 2 h. Cells were trypsinized, and incubated in rhodamine free media for 0, 7, 15, 30 and 60 min. Rhodamine fluorescence intensity was quantified at 520nm using a flow cytometer (BD Biosciences). Experiments were done in triplicate and were repeated three times. Mean fluorescence intensity was calculated using FlowJo software and plotted. γ-Glutamyl transferase activity was determined by a colorimetric assay from Biovision (Milpitas, CA) in cells treated with 25 or 50 μM CdCl₂ for 24 h and glutathione levels were measured with GSH-Glo assay (Promega) in cells treated with 10 or 50 μM CdCl₂ for 6, 12 and 24 h.

Comparison of HO-1 as Biomarker for Kidney Injury with Known Cell Viability/Cell Death Assays

To compare the predictive performance of HO-1 immunofluorescence staining with established assays of cell toxicity, we first reduced the datasets so that each of the 39 compounds in the validation panel (measured in six to eight different concentrations between 0.1 and 1000 μM) had just one assigned output value per assay. This single value was determined for each of the four assays (HO-1, cell number, ATP concentration, and dead cell number) as the maximal significant deregulation compared with control that could be observed at any given concentration of a drug.

We calculated the AUC-ROC both for proximal tubule toxic drugs only and nephrotoxicants including indirectly acting compounds. To determine for each assay where sensitivity and specificity are maximal, the Youden index was calculated as sensitivity (%) + specificity (%) − 100. Applying this cutoff for each assay, sensitivity was calculated by dividing the number of true positive toxicants by the number of total toxicants in the validation panel. Specificity was calculated by dividing the number of true negative nontoxicants by the number of total nontoxicants in the set. The positive predictive value is defined as the ratio of true positive toxicants to all compounds identified as toxic and the negative predictive value is calculated as the ratio of true negative nontoxicants to all compounds identified as nontoxic. Chi-squared test statistic and corresponding P value were calculated to
describe the goodness of fit of the observed distribution (measured results in the respective assays) to the theoretical one (toxic or non-toxic). Improvement of predictive via combination of cell death/viability assays with HO-1 was calculated using logistic regression. A combined output was calculated as \(\alpha_0 + \alpha_1 \times \text{value assay 1 (HO-1)} + \alpha_2 \times \text{value assay 2} \). The final AUC-ROC were calculated using the combined output values both for proximal tubule toxic drugs only and when indirect nephrotoxins are included.

To include dose-response data into the analysis of HO-1 performance, we used the cell viability data (based on cell number) to compute the IC25 (concentration that kills 25% of the cells), and the HO-1 fold change data to compute CIC1001 (concentration at which HO-1 induction was 2 SD above or below the baseline in the log domain). To obtain IC25 values from cell viability data, replicates were combined by averaging and the resulting values were fit to four-parameter logistic curves using the L-BFGS-B nonlinear optimization algorithm implemented in Python’s SciPy library. The IC25 was computed by interpolating each fitted viability dose-response curve to find the concentration where the normalized cell viability was 0.75. CIC1001 values were computed from the HO-1 fold change data by first discarding data points for concentrations above the computed IC25 for each drug (toxicity effects and low total cell numbers rendered the data inconsistent and noisy) and then applying the same logistic curve fitting procedure described above on the remaining data. The CIC1001 was computed by interpolating each fitted HO-1 expression dose-response curve to find the concentration where HO-1 expression exceeded the baseline by plus or minus two times the SD of all negative controls, calculated in the log domain (i.e., the geometric mean multiplied or divided by the geometric SD squared). We flagged each compound as +TOX if it achieved at least 25% toxicity (i.e., the Emax for the viability dose-response curve was 0.75 or lower) and thus had a defined IC25, or −TOX if it did not in which case we set its IC25 to 1000 \(\mu M \). Likewise, we used +HO-1 to indicate compounds that showed significant HO-1 induction and thus a defined CIC1001, and −HO-1 for those that did not in which case we set the CIC1001 to 1000 \(\mu M \). The combination of these descriptors defines four response categories: +TOX/+HO-1, −TOX/−HO-1, −TOX/+HO-1 and +TOX/−HO-1.

Evaluation of HO-1 Expression Using In Vivo Toxicogenomic Databases

To determine the gene expression profile of HO-1 (Hmox-1) following kidney toxicity in vivo, two public toxicogenomics datasets: DrugMatrix (of the National Toxicology Program; https://ntp.niehs.nih.gov/drugmatrix/index.html) and TG-GATES (of the National Institute of Biomedical Innovation; http://txico.nibio.go.jp/english/index.html) that track kidney gene expression using Affymetrix 230 2.0 microarrays were mined. Prior to the analysis described below, kidney microarray datasets were normalized using the RMA algorithm implemented in GeneSpring GX 12.6 (Agilent Technologies, Palo Alto, CA). The DrugMatrix and TG-GATES kidney datasets are composed of 1410 and 3728 microarrays, respectively. The DrugMatrix and TG-GATES gene expression data are available through the GEO (Series ID: GSE57811) and ArrayExpress databases (E-MTAB-800), respectively. Association between kidney tubule necrosis and normalized expression of Hmox1 or Havcr1 in rat kidney was determined using the Welch t test (also known as an unequal variances t test) implemented in GeneSpring GX 12.6. Association between Hmox1 expression and expression of validated kidney toxicity transcriptional biomarkers was performed in Microsoft Excel (Microsoft Corp., Redmond, WA) using the regression statistical function.

Evaluation of HO-1 Expression in a 3D Human Kidney MPS

Cell Isolation and Culture

Human kidney tissue was obtained from a healthy mass after surgery due to diagnosis of renal carcinoma at the University of Washington Medical Center. The University of Washington Institutional Review Board approved human subjects protocol. Tissue for kidney tubule epithelial cell isolation was stored at 4°C in HBSS buffer containing Pen-Strep and was processed within 24 h as previously described. Primary renal epithelial cells were cultured and grown to confluency in approximately 10 d under normal static conditions.

Cell Seeding in Nortis Device

The kidney tube MPS consists of a tubule embedded in a collagen I matrix. Physical dimensions of the tubule are a length of approximately 6 mm, with an internal diameter of 120 \(\mu M \) and volume of 70 nl. Each tubule contains approximately 5000 primary proximal tubular epithelial cells. The proximal tubular epithelial cells form a patent confluent tubule that self-assembling with tight junctions and expression of epithelial markers, including markers of polarization (Weber et al., manuscript in preparation). The Nortis MPS devices were first filled with extracellular matrix of rat tail collagen type I (Ibidi Inc., Verona, WI) at 6 mg/ml at 4°C. The devices were left at 4°C for 30 min and then room temperature overnight. To seed the MPS devices, 3–4 \(\mu l \) of cell suspension was injected into the lumen of each device. Cells were allowed to recover from trypsin digestion and adhere for 24 h before initiating flow at 0.5 \(\mu l/min \). The integrity of the tubule cell structure was assessed grossly by light microscopy on a weekly basis and viability at 4 wks was determined using a LIVE/DEAD Viability/Cytotoxicity kit (Invitrogen, Carlsbad, CA).

Assessment of CdCl2-Induced Nephrotoxicity

MPS devices with approximately 100% tubule confluency after 14 + d in culture were used. Cadmium chloride (Sigma-Aldrich) was flowed through the devices at a final concentration of 25 \(\mu M \) CdCl2 while control devices were flowed with normal DMEM-F12 media (0 \(\mu M \) CdCl2) for 48 h. At the termination of the experiment, HPTECs in Nortis devices were fixed, permeabilized, blocked and immunofluorescence staining for HO-1 and KIM-1 was performed using respective primary and secondary antibodies: HO-1 (rabbit 1:100; Abcam, Inc.) and KIM-1 (mouse 1:100; R&D Systems, Minneapolis, MN) and goat anti-rabbit or goat anti-mouse (1:1000; Abcam, Inc.) secondary antibodies. Fluorescence images were acquired on Nikon Eclipse Ti-S.

Statistics

Unless otherwise indicated, data are presented as mean ± SEM. Statistical difference (P<0.05) as calculated by Student’s t test. Multiple group comparison was conducted by ANOVA followed by Dunnett’s post hoc test. P<0.05 was considered significant and represented by *
as compared with corresponding controls. All graphs were generated using GraphPad Prism (GraphPad, Inc., La Jolla, CA), MATLAB (MathWorks, Natick, MA) or Matplotlib (open source/J.D. Hunter). Receiver-operator characteristic curves and other statistical parameters like chi-squared, P value, and sensitivity/specificity, were calculated using GraphPad Prism (GraphPad, Inc.). Logistic regression parameters of the combined assays were calculated using StatPages (statpages.org/logistic.html, John C. Pezzullo, Washington, DC).

ACKNOWLEDGMENTS

M. Adler was supported by a Colgate Palmolive Postdoctoral Fellowship Award through the Society of Toxicology and M. Hafiner was supported by the Swiss National Science Foundation (P300P3_147876).

This work in the Vaidya laboratory was supported by an Innovation in Regulatory Science Award from Burroughs Wellcome Fund, Regulatory Science Ignition Award from Harvard Program in Therapeutic Sciences at Harvard Medical School, a pilot project grant from the Harvard-NIEHS Center for Environmental Health (P30ES000002), National Institutes of Health (NIH) grant U13-TR000504 and resources made available through the NIH LINCS grant U34-HG006097.

The authors appreciate the support of ICCB-Longwood facility at Harvard Medical School in training M. Adler and S. Ramm for compound library preparation and high throughput HO-1 cell staining. The authors also appreciate the support of Harvard Catalyst, The Harvard Clinical and Translational Science Centre for statistical advice.

DISCLOSURES

None.

REFERENCES

This article contains supplemental material online at http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2015010060/-/DCSupplemental.
Supplementary Materials

1. Supplementary Methods

2. Supplementary Figures
 - Figure S1. Dose response and time course data for cell viability following kidney toxic and non-toxic compounds in HPTECs.
 - Figure S2. Additional HO-1 profiles.
 - Figure S3. KIM-1 expression and secretion in proximal tubular epithelial cells after incubation with several nephrotoxic compounds.
 - Figure S4. Raw cell viability and HO-1 induction data and fitted logistic curves for 39 drugs and Curcumin (a non-toxic HO-1 inducer).

3. Supplementary Tables
 - Table S1. List of compounds used in the study.
 - Table S2. List of primers used for RT-PCR.

4. Data File S1: Computational Mining of the Toxicogenomic databases (UPLOADED SEPARATELY)
Supplementary Materials

1. Supplementary Methods

Cell culture conditions for permeability studies and high throughput screening

HPTEC medium was supplemented with 100 IU/ml penicillin, 100 µg/ml streptomycin, 36 ng/ml hydrocortisone, 10 ng/m epidermal growth factor, 1% insulin-transferrin-selenium and 4 pg/ml triiodothyronin on collagen coated tissue culture plates (6 µg/cm²) at 37°C in a humidified 5% CO₂ incubator. HK-2 medium was supplemented with 0.05 mg/ml bovine pituitary extract (BPE) and 5 ng/ml human recombinant epidermal growth factor (EGF). The medium was replaced one day after seeding and then every second day. For permeability studies, the cells were seeded on HTS transwell (Corning Life Science) according to manufacturer's protocol. The cells were cultured on Poly-D-Lysine coated black clear bottom 384-well plate (Corning Life Science) for high throughput screening (HTS) experiments.

Live cell imaging and measurement of oxidative stress (ROS) and number of dead cells

Automated live-cell, multi-color image acquisition was performed on an Operetta® High Content Imaging System (Perkin Elmer, Walthalm, MA) using a 20X objective. Quantitative image analysis was performed using Columbus 2.4.2 Software (Perkin Elmer, Walthalm, MA). Evaluated measurements included the texture of the cells in digital phase contrast images (exposure time 50 ms, normalization by Kernel, SER Edge-filtered, 1px), mean ROS intensity per well (max. excitation/ emission wavelength: 500/ 550 nm, exposure time 60 ms), mean number of TOTO-3 Iodine positive stained cells per well (max. excitation/ emission wavelength: 642/ 660 nm, exposure time 60 ms), and mean TMRM intensity per well (max. excitation/ emission wavelength: 577/ 590 nm, exposure time 60 ms). The average of these numerical measurements from four biological replicates (two wells per condition, two fields per well) was normalized to the average of the 0.5% DMSO treated control wells.

Gene expression profiling using L1000 platform
The method involves ligation-mediated amplification (LMA) using locus specific probes engineered to contain unique molecular barcodes, universal biotinylated primers, and 5.6-micron optically-addressed polystyrene microspheres coupled to capture probes complementary to the barcode sequences. Specific probes were annealed to HPTEC cDNA, ligated by a taq ligase, amplified, and then hybridized to barcoded Luminex beads. Beads are analyzed using Luminex FLEXMAP 3D® technology by identifying specific bead region and measuring the density of the hybridized probes on each bead with laser beams. Data were calibrated and normalized to 80 invariantly expressed transcripts in each plate.

Immunofluorescence staining

All primary antibodies were monoclonal, apart from anti-AQP1 (polyclonal) and were used at following dilutions: mouse anti-ZO-1 (1:100), mouse anti-N-cadherin (1:50), mouse anti-cytokeratin 18 (1:100), rat anti-E-cadherin (1:50), and mouse anti-HO-1 (1:100, 1:50). The cells were exposed with either FITC-conjugated donkey anti-rat IgG, or Alexa Fluor 488-conjugated donkey anti-mouse IgG at a dilution of 1:200 for 1h at room temperature. Cells were mounted with Vectashield-DAPI mounting medium (Vector Laboratories) or DAPI solution (10 µg/ml in PBS) and examined by ECLIPSE 90i microscope (Nikon Instruments Inc.) and ImageXpress Micro (Molecular Device, Sunnyvale, CA).

Semiquantitative and real-time PCR

Total RNA was isolated using QIAshredder™ and RNeasy® Mini Kit (Qiagen) and transcribed into cDNA using QuantiTect Reverse Transcription Kit (Qiagen). Semiquantitative PCR was performed with HotStarTaq Master Mix Kit (Qiagen) using a C1000™ Thermal Cycler (Bio-Rad Laboratories) under standard cycling conditions. The PCR products were separated by electrophoresis on a 1.5% agarose gel containing 0.5 µg ethidium bromide per ml and visualized with a BioRad Imager (Biorad) under UV light. Real-time PCR (qPCR) was carried out on a CFX96 Touch™ PCR Detection System (Bio-Rad Laboratories) using QuantiFast®SYBR® Green PCR Kit (Qiagen). All samples were measured in duplicates and normalized against GAPDH. Changes in the mRNA expression were calculated using the
ΔΔCt method relative to 0.5% dimethyl sulfoxide (DMSO) control. Primers for specific genes were designed using MacVector software (MacVector Inc., Cary, NC) and are listed in Supplementary Table 2.

Transport Activity

The integrity of the cell monolayer was determined by measuring the transepithelial electrical resistance (TEER) using the Millicell® ERS-2 meter (Millipore). TEER of cell-free filter was subtracted from all samples and the values are expressed in ohms per square centimeter. Confluent monolayers were used to evaluate the permeability and transport properties of HPTECs. The amount of [14C]-sucrose was calculated as apical to basolateral (A-B) or basolateral to apical (B-A) transport. Fluxes across the monolayers were calculated as nmol/well. For the flow cytometer based measurement of rhodamine 123m a minimum of 20,000 events were collected per sample, and the samples were gated on forward scatter versus side scatter to exclude clumps and debris. Amount of glucose transport was measured after 5, 15, 30, 45, 60, 90, and 120 min of incubation with 100, 200, and 500 µM 2-NBDG (2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose). Cells were lysed with 0.1 mL of cell lysis buffer (1 % sodium deoxycholate, 40 mM KCl, and 20 mM Tris [pH 7.4]) for 10min at RT and 90µl supernatant was transferred into black 96-well plates. Fluorescence of 2-NBDG was measured at 485/528 nm (ex/em) using a Synergy H1 microplate reader (BioTek Instruments, Inc.) and the amount of the intracellular concentration of 2-NBDG was calculated based on a standard curve. 2-NBDG concentration was normalized to DNA content after adding 1 µg/ml Hoechst into each well and measurement of the fluorescent intensity at 360/460 nm (ex/em).

Enzymatic Assays

γ-Glutamyl transferase (GGT) activity was determined by the measurement of p-nitroaniline (pNA) released from the L-γ-glutamyl-pNA substrate using a colorimetric assay from Biovision (Milpitas, CA). Cells were treated with 25 or 50 µM CdCl₂ for 24 h and the release of pNA was measured spectrophotometrically at 418 nm every 5 min for up to 2 h using the SpectraMax Paradigm microplate reader (Molecular Devices). GGT activity is expressed as nanomoles of pNA per minute and milligram of
protein. Glutathione (GSH) levels were measured with GSH-Glo assay (Promega Corporation) in cells treated with 10 or 50 µM CdCl₂ for 6, 12 and 24 h. The luminescent signal was read using the luminometer (Turner Biosystems), and the amount of GSH was calculated based on the standard curve. All experiments was performed in triplicate and repeated three times independently.

Computational data mining of rat Toxicogenomic databases

Association between Hmox1 and Havrc1 and renal pathology: Since multiple doses are often required to observe pathology, only data derived from DrugMatrix or TG-Gates animals dosed for more than one day were selected for analysis. There were 252 kidney samples in the DrugMatrix data set having both gene expression data and pathology assessment, dosed >1 day. Of the 252 samples with pathology determinations, 39 animals displayed “kidney_cortex, tubule, necrosis” (Supplementary File 1, tab 1). In the case of the TG-GATES data set, all >1 day kidney samples with a pathology determination of “kidney:necrosis:renal tubule”, were analyzed. A total of 1856 samples met this standard (Supplementary File 1, tab 2). Twenty-two were marked positive for renal tubule necrosis and 1834 were negative (Supplementary File 1, tab 2). Prior to the analysis, Affymetrix microarray kidney gene expression sample files from the DrugMatrix and TG-GATEs were normalized separately using the RMA algorithm. The association between pathology, and *Hmox1* and *Havrc1* expression were evaluated using a Welch test (unpaired, unequal variance t–test) in Genespring 12.6.

Association between Hmox1 and established transcriptional biomarkers of kidney toxicity: To determine the association between expression of *Hmox1* and other validated transcriptional, such as *Havrc1*, a linear regression was performed using all available Affymetrix kidney gene expression data from DrugMatrix and TG-GATEs. The regression analysis was performed in Microsoft Excel using the “regression” statistical function.

3D human kidney microphysiological system (MPS)
Cell culture: Epithelial cell culture media consisted of Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12; Life Technologies; CA), supplemented with insulin (10 µg/mL), transferrin (5.5 µg/mL), selenium (6.7 ng/mL), penicillin (100 units/mL), streptomycin (100 µg/mL), amphotericin B (0.25 µg/mL), and hydrocortisone (50 nM).

Cell seeding in Nortis Device: The metal blocking rod was removed from the device, and mouse collagen type IV (Corning Inc., Tewksbury, MA) at 5 µg/mL for 1 hour was used for priming the device lumen. Confluent PTECs were digested with 0.05% trypsin-EDTA to obtain single cell suspensions. The cells were washed, counted and resuspended at a concentration of 15-20 x 10^6 cells/mL.
Figure S1. Dose response and time course data for cell viability following kidney toxic and non-toxic compounds in HPTECs. Effects of nine nephrotoxic model compounds vs. non-toxic control carboplatin on morphology and cell viability were assessed using cellular imaging of cells and ATP measurement (CellTiterGlo assay). Images were acquired 24 h after treatment on Nikon TE2000 using 20x objective. Structural changes in HPTECs were assessed using texture based image analysis measuring the pattern corresponds to ‘edges’ parameter using Perkin Elmer Operetta platform after 6, 12
and 24 h (SER Edge, 1px; exposure time: 50 ms; magnification: 10x). Calculated SER edge values of triplicates in three independent experiments for each condition (six fields per well) were analyzed using Columbus 2.4.2 Software, and normalized to average of the 0.5% DMSO controls. Data are presented as mean ± SEM fold change (n=3, *p<0.05).
Figure S2. Additional HO-1 profiles. (A) HO-1 protein significantly increased in HPTECs in a time-dependent manner following exposure to diverse kidney toxic compounds. Changes of HO-1 protein were measured by ELISA and presented as mean±SD (n=3, *p<0.05). (B) Upregulation of HO-1 gene expression in primary human RPTEC from ATCC (0.5% FBS) and Lonza (0.5% FBS) was detected after incubation with gentamicin, CsA, cadmium chloride and cisplatin for 24 h. The fold change values compared to controls (0.5% DMSO) were calculated by normalizing the values against GAPDH. Results are presented from one single experiment. (C) Concentrations of HO-1 protein in HK-2 cells after
incubation with model compounds for 24h. Changes of HO-1 protein were measured by ELISA and presented as mean ±SD of 3 individual replicates measured in duplicate.
Figure S3. KIM-1 expression and secretion in proximal tubular epithelial cells after incubation with several nephrotoxic compounds. (A) KIM-1 mRNA expression was assessed by qPCR 24 h following the incubation of gentamicin, CsA, cadmium chloride, and cisplatin in HPTECs, primary human RPTEC from ATTC and Lonza and did not show a dose-dependent increase in response to a toxic stimulus. (B) KIM-1 protein level and its secretion into cell media of HPTEC, quantified using Luminex bead assay, also demonstrate that KIM-1, a well known biomarker for kidney injury in vivo, is not induced in cells cultured in vitro in correlation to cytotoxicity. Data are presented from one representative experiment.
Figure S4. Raw cell viability and HO-1 induction data and fitted logistic curves for 39 drugs and Curcumin (a non-toxic HO-1 inducer). Blue and red vertical dotted lines indicate the IC25 and HO-1 (fold change of significant HO-1 induction), respectively. Crosses in the HO-1 induction data indicate
discarded data (see methods). Scales and labels are indicated on the schematic plot in the lower-right corner. The drugs are grouped by clinical toxicity classes using the colors from Figure 5D/E. Data are normalized to DMSO control.
3. Supplementary Tables

Table S1. List of compounds used in the study.

<table>
<thead>
<tr>
<th>Discovery panel</th>
<th>PT-toxic</th>
<th>Non-toxic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboplatin</td>
<td>Aristolochic acid</td>
<td>Cadmium chloride</td>
</tr>
<tr>
<td></td>
<td>Cadmium chloride</td>
<td>Cisplatin</td>
</tr>
<tr>
<td></td>
<td>Cisplatin</td>
<td>Cyclosporin A</td>
</tr>
<tr>
<td></td>
<td>Cyclosporin A</td>
<td>Doxorubicin</td>
</tr>
<tr>
<td></td>
<td>Doxorubicin</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Gentamicin</td>
<td>Ochratoxin A</td>
</tr>
<tr>
<td></td>
<td>Ochratoxin A</td>
<td>Tacrolimus (FK-506)</td>
</tr>
<tr>
<td></td>
<td>Tacrolimus (FK-506)</td>
<td>Tobramycin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Validation panel</th>
<th>Sec. mech. toxic</th>
<th>PT-toxic</th>
<th>Non-toxic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acarbose</td>
<td>5-Fluorouracil</td>
<td>4-Aminophenol</td>
<td>Acarbose</td>
</tr>
<tr>
<td>Aspirin</td>
<td>Allopurinol</td>
<td>4-N-Nonylphenol</td>
<td>Aspirin</td>
</tr>
<tr>
<td>Atenolol</td>
<td>Ciprofloxacin</td>
<td>Acetaminophen</td>
<td>Atenolol</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>Colchicine</td>
<td>Amanitin</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>Furosemide</td>
<td>Amphotericin B</td>
<td>Ibuprofen</td>
</tr>
<tr>
<td>Methylparaben</td>
<td>Methotrexate</td>
<td>Arsenic trioxide</td>
<td>Methylparaben</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>Vancomycin</td>
<td>Bacitracin</td>
<td>Sorbitol</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td></td>
<td>Carbamazepine</td>
<td>Sulfamethoxazole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Citrinin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N-Phenylanthranilic acid</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Idarubicin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indomethacin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lead(II) acetate trihydrate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitomycin C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Omeprazole</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paclitaxel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentamidine isethionate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phenacetin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potassium dichromate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Puromycin dihydrochloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapamycin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rifampin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tenofovir</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetracycline</td>
<td></td>
</tr>
</tbody>
</table>
Table S2. List of primers used for RT-PCR.

<table>
<thead>
<tr>
<th>GENE</th>
<th>F/R</th>
<th>SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>cDNA specific primers used for semi-quantitative PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidney-specific cadherin (KSP)</td>
<td>F</td>
<td>5'-GGC TGT GGC TGC TTT GTG TC</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5'-CAC CTG GTC ATT CTC ATC CTT CAC</td>
</tr>
<tr>
<td>Megalin</td>
<td>F</td>
<td>5'-GCA TTT TCG CTG TGG AAG TGG</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5'-CGT GGT CGC ACC TGT ATT CAC</td>
</tr>
<tr>
<td>Aquaporin-1 (AQP1)</td>
<td>F</td>
<td>5'-ATC ACA CAC GAA TTC AGC AAC CAC</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5' - ACA CCC CCA TAT GAG GCT TGA C</td>
</tr>
<tr>
<td>Multidrug resistance protein 2 (MRP2)</td>
<td>F</td>
<td>5'-CAG ACC TGC CAC TTT GTT TTG AG</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5' - CGA GAG AAT CCA GAA TAG GGA CAG</td>
</tr>
<tr>
<td>P-glycoprotein (MDR1)</td>
<td>F</td>
<td>5'-ATG GTG GTG GGA ACT TTG GC</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5' - GAA ACC TGA ATG TAA GCA GCA ACC</td>
</tr>
<tr>
<td>Organic cation transporter 2 (OCT2)</td>
<td>F</td>
<td>5'-ATA CAG TTG GGC TCC TGG TG</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5' - GAG GCG GGT AGA GAT TTT CC</td>
</tr>
<tr>
<td>GAPDH</td>
<td>F</td>
<td>5'- GGA GCG AGA TCC CTC CAA AAT</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5'- GGC TGT TGT CAT ACT TCT CAT GG</td>
</tr>
<tr>
<td>cDNA specific primers used for real-time PCR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemeoxygenase-1 (HMOX-1)</td>
<td>F</td>
<td>5'- CTT CAC CTT CCC CAA CAT TGC</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5' - TTC TAT CAC CCT CTG CCT GAC TGC</td>
</tr>
<tr>
<td>Kidney Injury Molecule-1 (KIM-1)</td>
<td>F</td>
<td>5'- CTG CAG GGA GCA ATA AGG AG</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5' - TCC AAA GGC CAT CTG AAG AC</td>
</tr>
<tr>
<td>GAPDH</td>
<td>F</td>
<td>5'- ATT GCC CTC AAC GAC CAC TTT G</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>5' - TCT CTC TCC TTC TTG TGC TCT TGC</td>
</tr>
</tbody>
</table>

4. Data File S1: Computational Mining of the Toxicogenomic databases (UPLOADED SEPARATELY)