αKlotho Mitigates Progression of AKI to CKD through Activation of Autophagy

Mingjun Shi,* Brianna Flores,* Nancy Gillings,* Ao Bian,* Han Jun Cho,* Shirley Yan,† Yang Liu,‡ Beth Levine,‡† Orson W. Moe,*‡** and Ming Chang Hu*‡

*Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Departments of †Pathology, ‡Internal Medicine, §Microbiology, and **Physiology, ‡Center for Autophagy Research, and ‡Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas

ABSTRACT

AKI confers increased risk of progression to CKD. αKlotho is a cytoprotective protein, the expression of which is reduced in AKI, but the relationship of αKlotho expression level to AKI progression to CKD has not been studied. We altered systemic αKlotho levels by genetic manipulation, phosphate loading, or aging and examined the effect on long-term outcome after AKI in two models: bilateral ischemia-reperfusion injury and unilateral nephrectomy plus contralateral ischemia-reperfusion injury. Despite apparent initial complete recovery of renal function, both types of AKI eventually progressed to CKD, with decreased creatinine clearance, hyperphosphatemia, and renal fibrosis. Compared with wild-type mice, heterozygous αKlotho–hypomorphic mice (αKlotho haploinsufficiency) progressed to CKD much faster, whereas αKlotho-overexpressing mice had better preserved renal function after AKI. High phosphate diet exacerbated αKlotho deficiency after AKI, dramatically increased renal fibrosis, and accelerated CKD progression. Recombinant αKlotho administration after AKI accelerated renal recovery and reduced renal fibrosis. Compared with wild-type conditions, αKlotho deficiency and overexpression are associated with lower and higher autophagic flux in the kidney, respectively. Upregulation of autophagy protected kidney cells in culture from oxidative stress and reduced collagen 1 accumulation. We propose that αKlotho upregulates autophagy, attenuates ischemic injury, mitigates renal fibrosis, and retards AKI progression to CKD.

AKI confers formidable morbidity and mortality in its acute phase, especially in the intensive care unit setting, where mortality is as high as 50%.1–2 Among survivors of AKI, the long-term outcome is far from benign. Patients who recover from AKI have a 25% increase in risk for CKD and a 50% increase in mortality after follow-up of approximately 10 years.3–4 Although clinical observations describe a clear association, they do not establish a causal link between AKI and CKD; human data from longitudinal post–AKI cohorts will be required but will take many years to obtain. As an initial exploration of this paradigm, we used rodent AKI models to examine CKD progression post-AKI with emphasis on the role of αKlotho post-AKI.

Klotho was initially discovered as an antiaging protein5 and is now called αKlotho to distinguish it from two other paralogs: βKlotho6 and γKlotho.7 αKlotho is a type 1 transmembrane protein highly expressed in the kidney and brain.8 The extracellular domain of transmembrane αKlotho can be released into the circulation as soluble αKlotho by
secretases9–12 and functions as an endocrine factor to exert a myriad of biologic effects on multiple target organs.13,14 αKlotho is involved in cytoprotection, antiapoptosis, anticell senescence, and antifibrosis, all of which may be crucial in tissue protection and regeneration.15,16 Animal studies have shown that (1) AKI from ischemic injury and AKI from cisplatin nephrotoxicity are transient states of αKlotho deficiency.17,18 (2) αKlotho protects the kidney from ischemic AKI when given immediately after the insult,18 and (3) restoration of αKlotho after established unilateral ureteral obstruction can prevent subsequent renal fibrosis.19,20 Clinical observational studies have shown αKlotho deficiency in both AKI18 and CKD.15,21,22 The relationship between αKlotho deficiency and CKD progression post-AKI has not been examined. This is a critical but unexplored pathophysiologic mechanism with immense therapeutic potential.

Autophagy is an evolutionarily conserved catabolic process for lysosomal degradation or recycling of cytoplasmic components and serves as a defense mechanism to protect and maintain normal cellular function.23–25 Defective or excessive autophagic flux contributes to aging and various diseases in humans.25,26 In ischemia,27,28 or cisplatin-induced29–33 AKI and unilateral ureteral obstruction,34,35 autophagy is activated. Several lines of evidence in animals showed that defective autophagy renders the kidney vulnerable to ischemic injury and nephrotoxicity.29–34,36,37 Dysfunction in autophagy also contributes to aging in all organs and tissues.38–40 Associations between the levels of autophagy and αKlotho have previously been reported, but the results were not consistent.41–44 Furthermore, whether the renoprotection rendered by αKlotho is related to modulation of autophagy has not been studied.

There were several objectives in this study. First, we strived to define appropriate AKI models that spontaneously and reliably progress to CKD. Second, we examined whether renal αKlotho deficiency is associated with CKD development post-AKI, and we manipulated endogenous αKlotho levels to examine whether its deficiency has a causal role in CKD. Third, we sought to define the therapeutic effect of αKlotho on the blockade of AKI progression to CKD. Fourth, we explored whether changes in αKlotho levels are associated with and alter levels of autophagy, cytoprotection, and extracellular matrix accumulation. Our studies establish a novel mechanistic link between αKlotho, autophagy, and renoprotection against fibrosis and post-AKI progression to CKD. We propose that the αKlotho deficiency leads to insufficient autophagy and renders the kidney more vulnerable to ischemic injury and that αKlotho administration post-AKI is a potential therapeutic agent for promotion of kidney recovery, suppression of renal fibrosis post-AKI, and prevention of progression to CKD.

RESULTS

Recovery after Severe AKI
Because clinical observational studies have not been able to establish a causal link between AKI and CKD, we used animal models to longitudinally examine CKD progression post-AKI.

Mice that underwent bilateral ischemia–reperfusion injury (Bi-IRI) or unilateral nephrectomy plus contralateral ischemia–reperfusion injury (Npx-IRI) were fed normal rodent chow and followed for 20 weeks after this single episode of AKI. Because more severe AKI is associated with worse long-term outcome, including higher mortality and incidence of CKD,3,4,45 we used the Bi-IRI model to vary the duration of ischemia to titrate the severity of AKI. Forty minutes of ischemia or longer led to no survival beyond 10 days (Figure 1A). Creatinine clearance (Cl\textsubscript{Cr}) was lower in the 35-minute than in the 20-minute ischemia group at 2 weeks and did not completely return to baseline in the 35- and 30-minute ischemia groups at 4 weeks after ischemia–reperfusion injury (IRI) (Figure 1B). At 2 weeks post-AKI, when Cl\textsubscript{Cr} was only slightly reduced, renal fibrosis was marked and more prominent in the 35- and 30-minute ischemia groups compared with the 20-minute ischemia group (Figure 1, C and D). More severe kidney injury induced by longer periods of ischemia should lead to maladaptive repair shown by fibrosis, a well-known hallmark of CKD and a final and common pathogenic pathway to development of CKD.46–48 We reasoned that renal fibrosis at 14 days post-AKI is likely to be the precursor of eventual CKD.

Murine Model of Post-AKI CKD
In both Bi-IRI and Npx-IRI groups, Cl\textsubscript{Cr} rapidly decreased to trough levels at 2 days followed by slow return to near-control levels within approximately 1–2 weeks. After 4 weeks of AKI, Cl\textsubscript{Cr} started to decline slowly but progressively to approximately 60% of normal renal function by 20 weeks (Figure 2A). Therefore, AKI progressed to CKD by 20 weeks after exposure to just one single episode of renal insult.

In addition to decline of Cl\textsubscript{Cr}, disturbed phosphate homeostasis is another aspect of CKD that can affect extrarenal complications and survival.48–50 The two models displayed differential patterns. In the Npx-IRI group, plasma phosphate (P\textsubscript{sp}) was increased within 1 week followed by normalization after 4 weeks; P\textsubscript{sp} in Bi-IRI was transiently decreased after 2 weeks followed by sustained elevation after 4 weeks. By 20 weeks after AKI, mice in the Bi-IRI group had severe hyperphosphatemia, but mice in the Npx-IRI group had a milder degree of hyperphosphatemia (Figure 2B). In contrast to the heterogeneous change in P\textsubscript{sp}, the urinary albumin-to-creatinine ratio (ACR), a predictor of CKD progression,51 was consistently and similarly elevated after 4 weeks and further increased in 20 weeks in both groups (Figure 2C).

Kidney histology with hematoxylin and eosin, Trichrome (Figure 2D, left panel), and periodic acid–Schiff stains (Supplemental Figure 1) showed glomerular collapse, tubular dilation, tubulointerstitial infiltration, and fibrosis in both models. Bi-IRI mice had less renal fibrosis but seemed to have more appreciable renal tubular dilation. Renal fibrosis scores (Figure 2D, right panel) provided semiquantitative information of the Trichrome findings. The changes in fibrotic markers (α-smooth muscle actin [α-SMA], connective tissue growth factor [CTGF], and collagen 1 [Col I]) by immunoblot were consistent with the
Trichrome staining, showing a robust increase in the Npx-IRI group and a less severe but still significant increase in the Bi-IRI group (Figure 2E). Thus, at 20 weeks, there was a difference in severity between the Npx-IRI and Bi-IRI models, but all of the animals had CKD with predominant fibrotic components.

Renal αKlotho Expression during AKI Progression to CKD

We and others have shown transient renal αKlotho deficiency in AKI and sustained renal αKlotho deficiency in CKD. However, the time profile of αKlotho alterations during the course of AKI progression to CKD has not been examined. The decrease in αKlotho is dependent on the severity of the insults (duration of ischemia) and the number of weeks after the injury. We found normalization of renal αKlotho expression by about 10 days, but the expression decreased again around 14 days after IRI in the ≥30-minute ischemia groups, with yet further decline by 28 days (Figure 3A). Interestingly, in the 20-minute ischemia group, αKlotho mRNA even temporally exceeded normal at 14 days and returned to the levels of the sham group (Figure 3B), indicating that mild ischemia may upregulate αKlotho mRNA in the kidney in a manner akin to preconditioned hypoxia, which can upregulate hypoxia-inducible factor to prevent tissue against additional hypoxia–induced damage. In the 30- and 35-minute groups, αKlotho mRNA was universally reduced by 14 days. By 28 days, αKlotho mRNA tended to rise in the 30-minute group but remained low in the 35-minute group (Figure 3B), indicating that the more severe insult from longer ischemia leads to persistent and irreversible decline in αKlotho protein and mRNA.

Next, we compared the severity of αKlotho deficiency at 20 weeks after AKI. αKlotho protein and mRNA expression in the kidney was reduced in both models (Figure 3, C and D), with mice from the Bi-IRI group having slightly higher αKlotho protein in the kidney. This further confirms that CKD is a state of renal αKlotho deficiency as shown previously.

Effect of Chronic High Dietary Phosphate Intake on Renal Fibrosis after AKI

Hyperphosphatemia is associated with cardiovascular disease in CKD, but the role of phosphate as a modulator for AKI transition to CKD is not known. We fed mice high–phosphate (2%) rodent chow for 18 weeks starting at 2 weeks post-AKI, when renal recovery has already transpired. High-phosphate diet led to minor elevations of PNi in sham mice but significantly increased PNi in both Bi-IRI and Npx-IRI mice (Figure 4A). Interestingly, ClCR slightly decreased, even in sham mice fed with high-phosphate diet (Figure 4B), and was drastically reduced in Npx-IRI mice but just slightly reduced in Bi-IRI mice, suggesting that phosphate loading may accelerate the AKI to CKD transition, particularly in mice with renal mass loss. Trichrome staining showed slightly but appreciably increased renal fibrosis in sham mice fed high phosphate and a robust increase in fibrosis in both Bi-IRI and Npx-IRI mice fed high-phosphate diet compared with normal-phosphate diet (Figure 4C). High-phosphate diet also induced more drastic histologic changes, including glomerular collapse, dilated renal tubules, and renal tubular atrophy, in both sham and two IRI models (Supplemental Figure 1). Consistent with the increase in histologic fibrosis, α-SMA, CTGF, and Col I protein were increased in Bi-IRI and Npx-IRI compared with sham mice and further increased by dietary phosphate loading (Figure 4D).

The phosphate effect may be direct, or it may act through other intermediates. We previously showed that phosphate can lower renal and circulating Klotho. αKlotho protein expression was significantly reduced by phosphate loading in all groups, including sham, Bi-IRI, and Npx-IRI mice (Figure 4D), indicating that phosphate suppresses αKlotho expression in the kidney, regardless of whether there is underlying kidney disease, through yet to be determined mechanism(s). We
propose that the detrimental effects of phosphate loading may be, in part, through suppression of aKlotho.

aKlotho Level and CKD Progression after AKI

To explore the relationship between aKlotho levels and renal outcome, we generated Bi-IRI–induced CKD in kl/+ (heterozygous aKlotho hypomorphic mouse line5 with aKlotho levels approximately 50% normal), WT (normal aKlotho levels), and Tg-Kl (transgenic mouse line that ubiquitously overexpresses mouse Klotho5 with aKlotho levels approximately 150% normal) mice. One week after IRI, ClCr was lower in kl/+ and higher in Tg-Kl mice compared with WT mice (Figure 5A). In addition, the rate of ClCr decline was much sharper in kl/+ mice than in WT mice. ACR started to increase at 1 week post-IRI, but Tg-Kl mice had much lower and kl/+ mice had higher ACR than WT mice (Figure 5B). Therefore, aKlotho-deficient mice had faster and aKlotho-overexpressing mice slower development of CKD. By 20 weeks, kl/+ mice had massive interstitial fibrosis, whereas Tg-Kl mice had very minor alterations compared with WT mice (Figure 5C). By 20 weeks, Tg-Kl mice maintained aKlotho protein levels in the kidney comparable with those of WT mice (Figure 5D), consistent with the renal fibrosis shown by Trichrome staining. Therefore, aKlotho-deficient mice have a higher risk of development of fibrosis and progression to CKD.

aKlotho Protein Administration Promotes Kidney Recovery and Reduces Renal Fibrosis

Genetic manipulations of aKlotho levels serve as proof-of-principle experiments, but eventual therapeutic translation requires testing the effects of exogenous recombinant aKlotho protein on the course of AKI and the AKI to CKD transition. We injected aKlotho protein 1 day after IRI, when kidney injury was fully established, plasma creatinine (PCr) had peaked, and aKlotho protein in the kidney was at its lowest levels.18,55 We continued daily injections for 4 days (Figure 6A). Although there was no change in the trough ClCr, which is expected given the timing of the injection, aKlotho administration was effective in promoting kidney recovery as evidenced by a faster rise in ClCr (Figure 6B) and less fibrosis (Figure 6C). In addition, there were higher levels of aKlotho expression and lower fibrogenic markers in the kidneys of aKlotho-treated than vehicle-treated AKI mice (Figure 6D), indicating that exogenous aKlotho administration preserves renal aKlotho expression and suppresses fibrosis. When we followed the animals #140 days, we found that mice without

Figure 2. AKI mice develop CKD. Three-month-old WT mice were subjected to 30-minute Bi-IRI or 30-minute Npx-IRI and then fed normal rodent chow for 20 weeks. Blood and urine were collected at designated times for (A) ClCr, (B) Ppx, and (C) urine ACR. Data are expressed as means±SDs of at least four mice from each group, and statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test, and accepted when *P<0.05; **P<0.01 versus sham at the same time point for A–C. BW, body weight. (D) Kidney morphology by hematoxylin and eosin (H&E) and Trichrome (TC) staining. (Left panel) Representative micrographs in kidney sections from animals of each group. (Right panel) Renal fibrosis scores obtained from TC-stained sections analyzed with ImageJ. At least four animals were included in each group. (E) Fibrotic markers in the kidney. (Left panel) Representative immunoblot for α-SMA, CTGF, Col I, and β-actin in total kidney lysates. (Right panel) Summary of all immunoblots. Data are expressed as means±SDs of at least four mice from each group, and statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test, and accepted when *P<0.05; **P<0.01 between two groups for D and E.
mRNA expression in the kidney was analyzed with qPCR. Results are expressed as means±SDs of three mice from each group, and statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test, and accepted when *P<0.05; **P<0.01 versus sham group; #P<0.05; ##P<0.01 versus 20 minutes. (C and D) Three-month-old WT mice were subjected to Bi-IRI or Npx-IRI and then fed normal rodent chow for 20 weeks. (C) Representative immunoblots for Klotho protein in the kidney are shown in upper panel. Lower panel is a summary of the immunoblots from three independent experiments. (B) αKlotho mRNA expression in the kidney by qPCR. Results are expressed as 2−ΔΔCt with normalization to cyclophilin and then a ratio to the sham group. Data are expressed as means±SDs of three mice from each group, and statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test, and accepted when *P<0.05; **P<0.01 versus sham group; 6P<0.05; 66P<0.01 versus 20 minutes. (C and D) Three-month-old WT mice were subjected to Bi-IRI or Npx-IRI and then fed normal rodent chow for 20 weeks. (C) Representative immunoblots for αKlotho and β-actin protein in the kidney (upper panel). Lower panel is a summary of the immunoblots from three independent experiments. Data are expressed as means±SDs, and statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test. (D) αKlotho mRNA expression in the kidney was analyzed with qPCR. Results are expressed as 2−ΔΔCt (Ct cycle number) by normalization to cyclophilin and then a ratio to the sham group. Data are expressed as means±SDs of three mice from each group, and statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test, and accepted when *P<0.05; **P<0.01 between two groups.

αKlotho treatment developed CKD after IRI as evidenced by a drastic reduction of ClCr, compared with mice treated with αKlotho (Figure 6B), indicating that early administration of αKlotho, even for a brief period of time, protects AKI to CKD transition.

αKlotho Deficiency Reduces and αKlotho Overexpression Restores Autophagy in the Kidney

Comparable with published results, autophagy was activated by Bi-IRI as evidenced by the higher LC3-II–LC3-I ratios in the kidney at day 2 (Supplemental Figure 2A) and an increase in the punctate pattern of fluorescent LC3 in renal tubules of transgenic GFP-LC3 reporter mice (Supplemental Figure 2B). As a separate examination from the AKI model, we explored the association of αKlotho levels with the state of autophagic flux in the kidney at baseline by measuring renal p62 protein levels and LC3-I to LC3-II conversion, well established markers for monitoring autophagy activity. Higher levels of p62 protein and lower ratios of LC3-II to LC3-I were found in the kidneys of kl/kl mice compared with WT mice, and a significant decrease in p62 and a slight increase in LC3-II–LC3-I ratios were found in the kidney of Tg-Kl mice (Supplemental Figure 2C), suggesting that αKlotho deficiency induces defective autophagy in the kidney at the baseline unperturbed state.

To directly explore the relationship between αKlotho levels and autophagy flux in the kidney after acute ischemic injury, we crossed a mouse line with two autophagy reporters (RFP;GFP-LC3) with kl/+ or WT, or Tg-Kl mouse to generate three new lines: kl/+;RFP;GFP-LC3, WT;RFP; GFP-LC3, and Tg-Kl;RFP;GFP-LC3. As shown in Figure 7, A–C, the IRI-induced upregulation of autophagy flux was more robust in Tg-Kl versus WT mice and less robust in kl/+ versus WT mice at day 1 on the basis of RFP and GFP signals. However, on day 2, GFP-LC3 signal declined in all three mouse lines; in contrast, RFP-LC3 signal even slightly increased. These results support the finding of Lin et al. that RFP-LC3 is a more reliable marker for autophagy flux than GFP-LC3 and that the RFP;GFP-LC3-reporter mouse can be used to monitor the dynamics of autophagy change in the kidney in response to IRI. In addition, IRI–induced LC3 punctae were prominently present in proximal tubules, weakly present in thick ascending limbs, and not present in distal tubules (Supplemental Figure 3), which is comparable with data in the literature.
[OK] cells) in vitro to more directly address whether αKlotho’s cytoprotection is associated with autophagy modulation. We mimicked IRI with H2O2 and found that H2O2–induced lactate dehydrogenase (LDH) release was reduced by coincubation with αKlotho (Figure 8A) as previously reported.16 The new finding, however, was that αKlotho increased the LC3-II to LC3-I ratios and decreased p62 protein in OK cells (Figure 8B) and increased the number of GPF-LC3 punctae (autophagosomes) in OK cells transfected with GFP-LC3 (Figure 8, C and D), thereby confirming the in vivo findings of higher baseline autophagic flux in the kidney of Tg-Kl mice compared with WT mice (Figure 7B). Bafilomycin A1 (Baf), an inhibitor of lysosomal acidification and also, an autophagy inhibitor,68 increased the ratios of LC3-II to LC3-I and p62 (Figure 8B), increased GPF-LC3 punctae (Figure 8, C and D), and also, blunted αKlotho–induced elevation of autophagic flux (Figure 8, B and C). Of note, Baf also significantly increased H2O2–induced LDH release (Figure 8A), indicating that suppression of autophagy by Baf rendered cells more susceptible to oxidative stress. Importantly, Baf partially but significantly blunted the αKlotho–induced cytoprotection as evidenced by an increased LDH release from OK cells (Figure 8A), which suggests that one of the mechanisms of αKlotho–induced cytoprotection is activation of autophagy. Because Baf is an inhibitor of late-phase autophagy by inhibition of fusion of autophagosomes with lysosomes,68 3-methyladenine (3-MA), an inhibitor of early-phase autophagy by inhibition of autophagosomes formation,69 was tested; 3-MA rendered cells more susceptible to oxidative stress and partially blunted the αKlotho effect through reduction of autophagy activity (Supplemental Figure 5), akin to the Baf effect (Figure 8). Finally, a third autophagy inhibitor, wortmannin, had a similar effect (data not shown) as that of 3-MA. Therefore, upregulation of autophagy activity may be one of mechanisms of αKlotho’s cytoprotection.

αKlotho Suppresses Collagen Accumulation

Another important aspect of AKI to CKD progression is renal fibrosis. To define the post-translational effects of autophagy on Col I metabolism in vitro, OK cells were cotransfected with CMV-GFP-Col I α2 (GFP-Col 1) plasmid followed by
treatment with active modulators of autophagic flux. As shown in Supplemental Figure 6, two autophagy inducers (LiCl and rapamycin) reduced but two autophagy inhibitors (Baf and wortmannin) increased Col I in OK cells, suggesting that autophagy participates in the maintenance of collagen balance in the cells and that defective autophagy reduces the cellular capacity to clear excessive Col I and subsequently, leads to Col I accumulation.

To directly evaluate the post-translational effects of αKlotho on collagen metabolism in vitro, GFP-Col I plasmid was transiently transfected into OK cells and treated with recombinant αKlotho protein. There was a dramatic decrease in extracellular and intracellular Col I accumulation (Figure 9, A and B), which was partially but significantly abolished by Baf (Figure 9B). To link the effect of LiCl, Baf, and αKlotho on collagen metabolism to modulation of autophagic flux, we measured LC3-II to LC3-I and p62 abundance. Both LiCl and αKlotho increased the LC3-II to LC3-I ratios and decreased p62 protein, whereas Baf slightly increased the LC3-II to LC3-I ratios but appreciably increased p62 protein (Figure 9C), suggesting that the αKlotho-induced reduction in Col I in OK cells is at least associated with upregulation of autophagic flux.

DISCUSSION

The notion of AKI developing into CKD was derived from retrospective clinical observations. AKI is now considered to be an independent risk factor for the development of CKD. However, there are limited experimental data directly addressing the AKI to CKD transition; thus, evidence supporting a causal relationship between AKI and CKD is still lacking. Acute αKlotho deficiency is associated with ischemic kidney injury, cisplatin nephrotoxicity, and ureteral obstruction in rodents. However, whether αKlotho deficiency can promote CKD progression after a single renal insult has not been...
studied. We now provide experimental longitudinal data that support this notion.

One aim of this study was to create animal models of AKI to CKD progression to permit additional mechanistic and interventional studies. We used two different manipulations corresponding to presence versus absence of reduced nephron mass to test our hypothesis. Mice from both models developed CKD, despite initial recovery if the initial kidney damage was severe enough. Genetic Klotho deficiency and high dietary phosphate accelerated CKD progression post-AKI. Phosphate toxicity is not only a consequence of declined renal function but also a risk factor for promotion of CKD progression, ectopic calcification, and cardiovascular events in humans. We showed that phosphate reduced αKlotho in the kidney even in normal mice and further downregulated the already low αKlotho in the kidney of CKD mice. Thus, αKlotho deficiency may be one potential intermediate of phosphotoxicity, and αKlotho deficiency, in turn, further increases hyperphosphatemia.

αKlotho deficiency was shown to be a contributor to renal fibrosis. The observation of better preservation of kidney function in Tg-Klotho with high renal and circulating αKlotho after renal insult cannot distinguish whether renal membrane αKlotho or circulating αKlotho plays a more important role in renoprotection. The administration of exogenous αKlotho (soluble αKlotho protein) promoted renal recovery and attenuated renal fibrosis, clearly supporting that soluble αKlotho is an active molecule. Importantly, ClCr was similar in the AKI-vehicle versus the AKI-αKlotho group at days 14 and 28, but renal fibrosis was more pronounced in the AKI-vehicle group, indicating that ClCr is not a sensitive and reliable marker for underlying renal pathology, perhaps because of functional compensation.

Autophagy is an intracellular degradation pathway in the maintenance of cellular homeostasis. Autophagy is activated in the kidney of AKI animals and purported to confer renoprotection. Although this study lacks in vivo data, the in vitro results support the cytoprotection of autophagy against oxidative stress–induced cell injury.

Figure 6. Soluble αKlotho protein promotes renal recovery and mitigates renal fibrosis in WT mice after Bi-IRI. (A) Three-month-old WT mice were intraperitoneally given αKlotho protein (0.01 mg/kg) for 4 consecutive days starting 24 hours after Bi-IRI. Mice were euthanized at 14, 28, and 140 days after surgery. (B) ClCr, BW, body weight. Data are expressed as means±SDs of at least four mice from each group, and statistical significance was assessed by unpaired t test. Statistical significance was accepted when *P<0.05; **P<0.01 versus vehicle. (C) Renal fibrosis at 14 and 28 days. (Upper panel) Representative micrographs of Trichrome staining in the kidney sections. Scale bar, 500 μm. (Lower panel) Renal fibrosis scores were obtained from Trichrome-stained sections with ImageJ. αKlotho and fibrotic markers in the kidney. (Left panel) Representative immunoblotting for αKlotho, α-SMA, CTGF, Col I, and β-actin protein. (Right panel) Summary of arbitrary units from all immunoblots. Data are expressed as means±SDs of four mice from each group, and statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test. Statistical significance was accepted when *P<0.05; **P<0.01 between two groups.
In vitro studies showed that αKlotho induces autophagy in cancer cell lines.44,82 The in vivo effects of αKlotho on autophagy in intact animals have not been described. We showed that autophagic activity is upregulated in Tg-KI mice at baseline as evidenced by significant p62 reduction and mild increase in LC3-II formation compared with WT mice. The reason for the discrepancy of changes between p62 and LC3 in Tg-KI mice is not clear. We assume that p62 would be more sensitive compared with LC3-II formation. Another possibility is that αKlotho enhanced autophagy flux at baseline primarily through an increase autophagosome degradation rather induction of autophagosome formation. αKlotho
Autophagy was shown to accelerate collagen degradation induced by TGF-β1 without modulation of collagen synthesis. Given that α-Klotho upregulates autophagic flux, we speculate that the inhibition of renal fibrosis by α-Klotho may also be associated with the modulation of autophagy. Our in vitro studies support this notion, because induction of autophagy reduced collagen accumulation, and the α-Klotho-induced decrease in Col I in cultured kidney cells was partially blunted by inhibitors of autophagic flux, indicating that autophagy participates in clearance of overproduced collagen driven by a constitutively active promoter. It is important to note that our study does not exclude other possibilities through which α-Klotho suppresses renal fibrosis, such as transcriptional or post-translational inhibition of Col I production. Whether α-Klotho reduces renal fibrosis post-IRI by modulation of autophagy activity remains to be confirmed with in vivo experiment.

In conclusion, animals surviving from AKI still progress to CKD if the initial renal insult is adequately severe. α-Klotho deficiency and high-phosphate challenge accelerate AKI to CKD progression. α-Klotho supplementation prevents this progression.

Figure 8. α-Klotho upregulates autophagy and protects kidney cell against oxidative stress–induced cell injury. OK cells were treated with H2O2 with or without Baf (200 nM). In addition, recombinant α-Klotho protein was added to examine whether α-Klotho suppresses cell injury induced by H2O2. (A) LDH in supernatants released from OK cells was used for assessment of cell injury. (B) Protein expression of LC3-I, LC3-II, and p62 protein in OK cells. (Left panel) Representative immunoblots for LC3-I and LC3-II, p62, and β-actin protein. (Right panel) Summary of immunoblots from three independent experiments. Data are expressed as means±SDs. (C) Representative immunocytochemistry for α-Klotho (blue), LC3 (green), and phalloidin (red) in OK cells. OK cells were seeded on coverslips and transfected with GFP-LC3 plasmid. After 24 hours of transfection, cells were treated with H2O2 and/or Baf. Vehicle (upper panel) or recombinant α-Klotho protein (0.4 nM; lower panel) was added to examine whether α-Klotho suppresses cell injury induced by H2O2 in the presence of α-Klotho or vehicle for control for 24 hours. Scale bar, 20 μm. (D) Quantification of the number of GFP-LC3 punctae per cell in OK cells (100 cells analyzed per sample). Results represent as means±SDs from three independent experiments. Statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test. Statistical significance was accepted when *P<0.05; **P<0.01 between two groups.
progression by promoting AKI recovery and attenuating renal fibrosis. The renoprotective and anti-fibrotic effects of αKlotho are probably, at least in part, attributable to an increase in autophagic flux (Figure 9D). Obviously, αKlotho also protects the kidney through antioxidative and antiapoptotic effects. Consequently, less kidney damage should lead to less renal fibrosis. Administration of αKlotho protein may be a promising strategy to prevent or retard CKD progression post-AKI.

CONCISE METHODS

Antibodies and Chemicals
Details are shown in Supplemental Material.

Animal Models and Experiments
Genetic αKlotho hypomorphic mice with αKlotho deficiency (kl/kl or kl/+)) and transgenic mice overexpressing αKlotho (Tg-Kl) were previously described. All were 129 S1/SV1mJ (129 SV) background. A transgenic reporter mouse with GFP-LC3 was a gift from Noboru Mizushima (Tokyo Medical and Dental University), and a second transgenic reporter mouse with RFP;GFP-LC3 was a gift from Joseph Hill (University of Texas Southwestern Medical Center). These lines were crossmated with WT mice 129 S1/SV1mJ (129 SV) for approximately five generations and subjected to the experimental surgeries. The RFP;GFP-LC3 reporter mouse line was also crossmated with kl/+; WT, and Tg-KI mouse lines to generate three new mouse lines: kl/+;RFP; GFP-LC3, WT;RFP;GFP-LC3, and Tg-KI;RFP;GFP-LC3, respectively.

Most experiments were performed in 3-month-old mice unless specifically stated. Two AKI models were generated using established

Figure 9. αKlotho-induced reduction of Col I accumulation is associated with increase in autophagic flux in OK cells. OK cells were seeded on coverslips and transfected with GFP-Col I plasmid. After 24 hours of transfection, cells were treated with autophagy inducer (LiCl; 10 mM) or suppressor (Baf; 200 nM) or αKlotho (0.4 nM) or vehicle. Cells were stained with anti-αKlotho and examined by confocal fluorescent microscopy. Rhodamine-phalloidin served as the counterstain. (A) Representative immunocytochemistry for αKlotho (blue), Col I (green), and phalloidin (red) in OK cells analyzed by laser confocal microscopy. Intracellular collagen is depicted by arrows, and extracellular collagen accumulation is depicted by arrowheads. Scale bar, 50 μm. (B) Representative immunocytochemistry for αKlotho (blue), Col I (green), and phalloidin (red) in OK cells stained and quantified with the Sirius Red/Fast Green Kit. Scale bar, 50 μm. (C) OK cells were treated with LiCl (10 mM), Baf (200 nM), and αKlotho (0.4 nM) versus vehicle for 24 hours, and lysates were immunoblotted. (Left panel) Representative immunoblots for LC3-I and LC3-II, p62, and β-actin. (Right panel) Summary of immunoblots from three independent experiments. Data are expressed as means±SDs, and statistical significance was assessed by one-way ANOVA followed by Newman–Keuls test. Veh, vehicle. Statistical significance was accepted when *P<0.05; **P<0.01 between two groups. (D) Proposed working model of the effect of αKlotho on autophagy in AKI. αKlotho maintains a normal level of autophagy. Low αKlotho reduces and high αKlotho increases autophagic flux. Upregulation of autophagy exerts both cytoprotective and anti-fibrotic actions. In addition, αKlotho also protects the kidney against injury from oxidative stress or ischemia through antioxidation and antiapoptosis, which are independent of regulation of autophagy.
methods from our laboratory.15-18: (1) Bi-IRI,15 and (2) Npx-IRI.18 To explore the effects of high-phosphate diet, we started to treat animals 2 weeks after the acute insult with rodent chow (2.0% Pi; Harlan Teklad TD-08020; Harlan Industries, Indianapolis, IN) versus normal rodent chows (0.7% Pi; Harlan Teklad) for 18 weeks. All animal protocols were approved by the Institutional Animal Care and Use Committee at the University of Texas Southwestern Medical Center. Detailed information is in Supplemental Material.

Blood, Urine, and Kidney Samples Collection
At designated time points, mice were placed individually in metabolic cages (Hatteras Instruments Inc., Cary, NC) for 24-hour urine collections. Mice were anesthetized with isoflurane; blood samples were collected in heparinized tubes, and plasma was separated and stored at −80°C until analysis. Urinary and plasma chemistries measurements used previously published methods.87 For histology, kidneys were isolated, sliced, fixed with 4% paraformaldehyde, and embedded in paraffin blocks for histologic and immunohistochemical studies; the remaining parts of kidneys were snap frozen in liquid N2 and stored at −80°C until RNA or protein extraction.

Kidney Histology and Histopathology, Immunohistochemistry, Immunoblotting, and Real-Time RT-PCR
Four-micrometer sections of paraffin–embedded kidney tissues were stained with hematoxylin and eosin, Masson Trichrome, and periodic acid–Schiff. A semiquantitative pathologic scoring system was used as described.18 To evaluate renal fibrosis, the fibrotic area and fibrosis intensity in Trichrome–stained kidney sections were quantified with the ImageJ program with published methods in a manner blinded to experimental conditions.18 Immunohistochemical studies and immunoblotting were performed as previously described.15,17,18 Detailed information about primary and secondary antibodies is in Supplemental Material. Total RNA from the kidney was extracted using the RNeasy Kit (Qiagen, Germantown, MD). cDNA was generated with oligo-dT primers using the SuperScript III First Strand Synthesis System (Invitrogen, Carlsbad, CA). Primers used for qPCR and its conditions are shown in Supplemental Material. Data were expressed at an amplification number of 2−ΔΔCt normalized to cyclophilin and compared with controls.

Transmission Electron Microscopy
The kidney slices were fixed overnight with Karnovsky fixative (2.5% glutaraldehyde, 4% paraformaldehyde, and 8 mM CaCl2 in cacodylate buffer [0.1 M, pH 7.4]). Ultrathin sections were visualized with a Jeol 1200 EX Transmission Electron Microscope (Jeol Ltd., Akishima, Japan) in a manner blinded to experimental conditions.

Cell Culture
The working concentration of Baf was 200 nM, the working concentration of LiCl was 10 mM, the working concentration of rapamycin was 0.5 μM, the working concentration of wortmannin was 10 μM, and the working concentration of 3-MA was 10 mM. The LDH release kit was purchased from a vendor (Clontech Laboratories, Mountain View, CA).

The GFP-LC3 fusion plasmid was transiently transfected into OK cells using Lipofectamine 2000 (Invitrogen). OK cells were treated with H2O2 and/or autophagy modulators (inducers or suppressors) in the presence or absence of αKlotho protein. Cell lysates were prepared16,17 and immunoblotted for LC3 protein. Supernatants from cell culture media were used for measurement of LDH release as we described previously.16,17 Fluorescent microscopy was performed as described previously.17,88 The number of punctae was quantified under confocal microscopy using at least 100 cells per sample.

In addition, a CMV-GFP-Col1α2 (GFP-Col I) plasmid (OriGene Technologies, Rockville, MD) was transiently transfected into OK cells. After treatment with autophagy modulators or αKlotho, cells were fixed, stained with anti-αKlotho, counterstained with rhodamine-phalloidin, and subjected to confocal fluorescent microscopy. Cells were then stained with Sirius Red/Fast Green Collagen Staining Kit (Chondrex, Inc., Redmond, WA) for quantitative analysis collagen accumulation in cells following the kit’s instructions.

Statistical Analyses
Data are expressed as means±SDs. Statistical analyses were performed using unpaired t test or one-way ANOVA followed by post hoc Newman–Keuls test when applicable. A P value ≤0.05 was considered statistically significant.

Additional information about materials and methods is in Supplemental Material.

ACKNOWLEDGMENTS
The authors thank Dr. Makoto Kuro-o for continuous helpful discussions and provision of reagents. The authors thank Dr. Noboru Mizushima (Tokyo Medical and Dental University) for providing the transgenic GFP-LC3 reporter mouse and the GFP-LC3 plasmid and Dr. Joseph Hill (University of Texas Southwestern Medical Center) for providing the transgenic RFP;GFP-LC3 reporter mouse. The authors also thank Ms. Jean Paek and Ms. Jessica Lucas for technical assistance.

The authors were, in part, supported by National Institutes of Health Grants R01-DK091392 and R01-DK092461, George M. O’Brien Kidney Research Center Grant P30-DK-07938, the Simmons Family Foundation, the Pak Center Innovative Research Support Program, and the Pak-Seldin Center for Metabolic and Clinical Research.

DISCLOSURES
None.

REFERENCES
43. Shiozaki M, Yoshimura K, Shibata M, Koike M, Matsuura N, Uchiyama Y, Gotow T: Morphological and biochemical signs of age-related...

This article contains supplemental material online at http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2015060613/-/DCSupplemental.
Supplementary Materials for

αKlotho Mitigates Progression of Acute Kidney Injury to Chronic Kidney Disease via Activation of Autophagy

Mingjun Shi¹, Brianna Flores¹, Nancy Gillings¹, Ao Bian¹,#, Han Ju Cho¹, Shirley Yan⁴, Yang Liu²,⁵, Beth Levine²,⁵,⁶,⁷, Orson W. Moe¹,²,³,*, Ming Chang Hu¹,²,*

¹Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Departments of ²Internal Medicine, ³Physiology, ⁴Pathology, and ⁶Microbiology, ⁵Center for Autophagy Research, ⁷Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA

Running title: αKlotho and autophagy in AKI and CKD

#Current affiliation for A.B.: Department of Internal Medicine, Division of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

*Address correspondence to:
Ming Chang Hu, MD, PhD
Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
Department of Internal Medicine
The University of Texas Southwestern Medical Center
5323 Harry Hines Blvd., Dallas, TX 75390-8885 USA
Telephone: 1-214-648-9797
Email: ming-chang.hu@utsouthwestern.edu

or

Orson W. Moe, MD
Charles and Jane Pak Center for Mineral Metabolism and Clinical Research
Department of Internal Medicine
The University of Texas Southwestern Medical Center
5323 Harry Hines Blvd., Dallas, TX 75390-8885 USA
Telephone: 1-214-648-7993
Email: orson.moe@utsouthwestern.edu
MATERIALS AND METHODS

Antibodies and chemicals: The following antibodies were used for immunoblotting and/or immunohistochemistry: Rat monoclonal anti-αKlotho antibody (KM2076), mouse monoclonal anti-Flag M2 (Sigma-Aldrich, St. Louis, MO), mouse monoclonal antibody against β-actin (Sigma Aldrich, St. Louis, MO), mouse monoclonal antibody against α-smooth muscle actin (α-SMA) (Sigma Aldrich, St. Louis, MO), rabbit anti-LC3 (Novus Biologicals, Littleton, CO), guinea-pig anti-p62 (ProgenBiotechnik GmbH, Heidelberg, Germany), Lotus tetragonolobus lectin (LTL) (Vector labs, Burlingame, CA), goat polyclonal antibody against Tamm-Horsfall protein (THP) (Santa Cruz Biotech, Santa Cruz, CA), rabbit polyclonal antibody against Na⁺-Cl⁻ cotransporter (NCC) (EMD Millipore, Billerica, MA), mouse monoclonal antibody against Calbindin D-28 (CB28) (Santa Cruz Biotech, Santa Cruz, CA), mouse monoclonal antibody against CTGF and rabbit polyclonal antibody against Collagen I (Abcam Inc., Cambridge, MA). Secondary Abs coupled to horseradish peroxidase for immunoblotting, or to FITC, Alexa Fluor, or Cy5, and Syto-61 fluorescent nuclear acid stain for IHC were purchased from Molecular Probes/Invitrogen (Molecular Probes Inc., Eugene, OR). Bafilomycin A1 (Baf), LiCl, 3-methyladenine (3-MA) and 30% hydrogen peroxide (H₂O₂) were purchased from Sigma-Aldrich (St. Louis, MO); Rapamycin and Wortmannin from LC laboratories (Woburn, MA). Baf and Rapamycin were dissolved in DMSO in working concentrations of 200 nM and 0.5 μM respectively for cell culture. The final volume of DMSO in cell culture media never exceeded 1/100. The working concentration of LiCl was 10 mM, 3-MA 10 mM, and Wortmannin 10 μM. Lactate dehydrogenase (LDH) release kit was purchase from Clontech laboratories, Inc. (Mountain View, CA).
Plasmids: GFP–LC3 fusion plasmid was kindly provided by Dr. Noboru Mizushima. Full length cDNA rat LC3 was inserted into pEGFP-C1, a GFP fusion protein expression vector (Clontech Laboratories Inc., Mountain View, CA). GFP-human Collagen I 1α2 plasmid driven by CMV promoter was purchased from OriGene Technologies (Rockville, MD). All plasmids were confirmed by sequencing analysis at Core Laboratory in UT Southwestern Medical Center.

Animal models and experiments: All animal work was conducted strictly following the Guide for the Care and Use of Laboratory Animals by the National Institutes of Health and was approved by the Institutional Animal Care and Use Committee at the University of Texas Southwestern Medical Center. Animals were housed in a temperature-controlled room with a 12:12 hour light-dark cycle and were given *ad libitum* access to tap water and standard rodent chow prior to assignment of experiment. Special rodent diets are mentioned below.

Genetic αKlotho-deficient mice were generated by transgenic disruption of the αKlotho locus resulting in hypomorphic expression. Transgenic mice overexpressing mouse αKlotho (Tg-Kl) was described previously. All mice were 129 S1/SVImJ (129 SV) background. The homozygous (kl/kl; extremely low to zero αKlotho levels); heterozygous (kl/+; low αKlotho levels); wild-type (WT; normal αKlotho levels); and transgenic overexpressor (Tg-Kl; high αKlotho levels) mice were genotype-confirmed by genomic PCR.

Transgenic mouse with GFP-LC3 reporter was a kind gift from Dr. Noboru Mizushima (Tokyo Medical and Dental University, Tokyo, Japan). Genotyping protocol was shown in the literature. Second transgenic mouse with RFP;GFP-LC3 reporter was a kind gift from Dr. Joseph Hill (UT Southwestern Medical Center, Dallas, USA). Genotyping protocol was published. These mouse lines were cross-mated with WT mice 129 S1/SVImJ (129 SV) for ~ 5 generation and was subjected to surgery. The RFP;GFP-LC3 reporter mouse line was also
cross-mated with kl/+, WT and Tg-Kl mouse lines respectively to generate three new mouse lines: kl/+;RFP;GFP-LC3, WT;RFP;GFP-LC3, and Tg-Kl;RFP;GFP-LC3.

Most of animal experiments were performed in 3 month-old mice unless specifically stated. Three AKI models in mice were generated using established methods from our laboratory:2,9,10

(1) Bi-lateral ischemic reperfusion injury (Bi-IRI):10 Under anesthesia, both renal arteries were carefully dissected from the vascular bundle and clamped for 30 minutes with arterial clips to induce ischemia. (2) Uninephrectomy plus contralateral ischemia reperfusion injury (Npx-IRI):9 Under anesthesia, the right kidney was removed and left renal artery was clamped with arterial clips for ischemia ranging from 20 to 45 minutes (period of ischemia) as described above. For the AK-transition-to-CKD study, we selected 30 minutes of ischemia. After clips were removed, the kidneys were observed for 5 minutes to ensure reperfusion. Sham animals underwent laparotomy of the same duration and manual manipulation of the kidney without arterial clamping.

At predetermined times after acute insult; 24-hour urine was collected. Under anesthesia, blood was drawn and kidneys were harvested, instantly snap-frozen in liquid nitrogen, and stored at -80°C for further processing. Plasma and urine chemistry of animals were analyzed using a Vitros Chemistry Analyzer (Ortho-Clinical Diagnosis, Rochester, NY).

Dietary treatment: To explore whether high phosphate diet affects transition of AKI to CKD, we started to treat animals 2 weeks after the acute insult with high Pi rodent chow 2.0% Pi (Harlan Teklad TD.08020) vs. normal rodent chows containing 0.7% Pi (Harlan Teklad 2016) for 18 weeks.

Blood, urine, and kidney samples collection: At designated time points after AKI induction, mice were placed individually in metabolic cages (Hatteras Instruments Inc., Cary, NC) for 24-
Urine samples were centrifuged (1,000 g x 10 min at 20°C) and the supernatants were stored at −20°C until analysis. Mice were anesthetized with Isoflurane and blood samples were collected in heparinized tubes, centrifuged (3,000 g x 5 min at 4°C), and the plasma was separated and stored at −80°C until analysis. At termination, mice were euthanized under anesthesia, and the kidneys were isolated and sliced. One slice were fixed with 4% paraformaldehyde for histological and immunohistochemical studies; the remaining parts of kidneys were snap-frozen in liquid N₂ and stored at −80°C until RNA or protein extraction and analysis.

Kidney histology and histopathology: Tissues were fixed in 4% paraformaldehyde (PFA) (16 hours at 4°C), and 4 µm sections of paraffin embedded kidney tissues were stained with Hematoxylin and Eosin (H&E), Periodic acid Schiff (PAS) and Trichrome, and then examined and photographed by a renal pathologist blinded to the experimental protocol using an Axioplan 2 Imaging system (Carl Zeiss Micro-Imaging, Inc. Thornwood, NY). A semi-quantitative pathological scoring system was used as described. A renal pathologist blinded to the experimental conditions evaluated the images.

To evaluate renal fibrosis, 4 µm paraffin embedded kidney sections were stained with Trichrome stain, and then examined and photographed by a renal pathologist blinded to the experimental protocol using an Axioplan 2 Imaging system (Carl Zeiss Micro-Imaging, Inc. Thornwood, NY). The fibrotic area and fibrosis intensity were quantified with Image J program with published methods.

Transmission electron microscopy: Kidney slices were fixed overnight with 2.5% glutaraldehyde and 2% paraformaldehyde in cacodylate buffer (0.1 M, pH 7.4) and samples were prepared as described in literatures. The ultrathin sections were cut on an
ultracryomicrotome (Ultramicrotome Reichert Ultracut E; Leica Microsystems, Wetzlar, Germany) and were visualized with Jeol 1200 EX transmission electron microscope (Jeol Ltd., Akishima, Japan) in a blind manner.

Immunohistochemistry and immunoblotting in the kidney: Immunohistochemistry protocols and immunoblotting protocols were performed as described in literatures.²⁹,¹⁰

Real time RT-PCR: Total RNA was extracted from mouse kidneys using RNAeasy kit (Qiagen, Germantown, MD). Complimentary DNA was generated with oligo-dT primers using SuperScript III First Strand Synthesis System (Invitrogen, Carlsbad, CA). Primers used for qPCR were: mouse \(\alpha \)Klotho forward- AAC CAG CCC CTT GAA GGG AC, and \(\alpha \)Klotho reverse- TGC ACA TCC CAC AGA TAG AC; and cyclophilin forward- TGC TCT TTT CGC CGC TTG CT, and cyclophilin reverse- TCT GCT GTC TTT GGA ACT TTG TCT G with conditions previously described.¹⁴ The reaction was performed in triplicate for each sample. Data were expressed at amplification number of \(2^{-\Delta\Delta Ct} \) normalized to cyclophilin and compared to controls.

Albumin and creatinine measurements: Using previously published methods,¹¹ plasma and urine creatinine concentrations were measured using a P/ACE MDQ Capillary Electrophoresis System and photodiode detector (Beckman-Coulter, Fullerton, CA).¹⁵ Specific urine albumin concentrations were determined by the Exocell mouse albumin ELISA kit (Exocell, Philadelphia, PA).

Cell culture: The opossum kidney cell (OK) cells were maintained in high glucose DMEM medium described in literature.¹⁵ OK cells were treated with \(\text{H}_2\text{O}_2 \), and/or autophagy modulators (inducers or suppressors) in the presence or absence of \(\alpha \)Klotho protein for 16 hours. Cell lysates were made¹,² and subjected to immunoblot for LC3 protein. Supernatants
from cell culture media were harvest for measurement of LDH release with LDH cytotoxicity detection kit as we described previously.1,2 GFP-LC3 was transiently transfected into OK cells using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Cells were treated with H\textsubscript{2}O\textsubscript{2}, and/or autophagy modulators (inducers or suppressors) for 16 hours. After fixation with 4% paraformaldehyde, cells were stained with anti-flag antibody for \(\alpha \)Klotho and with rhodamine-phalloidin for counterstain. Fluorescent microscopy analysis was performed as we described previously.2,16

\textbf{Qualitative and quantitative analysis of collagen in OK cells:} To qualitatively evaluate collagen deposition \textit{in vitro}, GFP-collagen I1\(\alpha \)2 plasmid driven by CMV promoter (CMV-GFP-Col1) was transiently transfected into OK cells. Twenty-four hours after transient transfection, OK cells were treated with \(\alpha \)Klotho protein or modulators of autophagic flux for 24 hours. OK cells were stained with anti-\(\alpha \)Klotho antibody to detect \(\alpha \)Klotho, counterstained with rhodamine-phalloidin; and underwent laser confocal microscopy. Cells were stained with Sirius Red/Fast Green collagen staining kit (Chondrex, Inc., Redmond, WA) for quantitative analysis following kit’s instruction. Briefly OK cells grown in glass coverslips were stained simultaneously for total protein (Fast Green) and collagen (Picrosirius Red). The dye was subsequently eluted from the section, and the optical density (OD) of the eluate was read at 540 and 605 nm using a spectrophotometer. The amount of collagen in the section was normalized by total protein with following equation: collagen I/protein = \([(\text{OD540}-(\text{OD605}*0.291))/0.0378]/(\text{OD605}/0.00204)\) according to the manufacturer’s instruction.

\textbf{Statistical analyses:} Data are expressed as Means ± SD. Statistical analysis was performed using unpaired \textit{Student t}-test, or one-way analysis of variance (ANOVA) followed by post hoc
Student-Newman-Keuls test when applicable. P value ≤ 0.05 was considered statistically significant.
SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1. Kidney pathology in CKD mice. WT mice at 3 months old were subjected to bilateral ischemia reperfusion injury (Bi-IRI), uninephrectomy and contralateral ischemia reperfusion injury (Npx-IRI), or laparotomy for Sham, and fed normal rodent chow or high Pi diet (2.0% Pi) respectively for 18 weeks starting 2 weeks after acute kidney insults. Representative micrographs of Periodic acid–Schiff (PAS) staining in the kidney sections from 4 animals of each group, scale bar = 100 μm. Upper panel: CKD mice were fed with normal phosphate rodent chow (NP); Bottom panel: CKD mice were fed with high phosphate rodent chow (HP).

Supplementary Figure 2. Autophagy flux in the kidney was up-regulated by bilateral ischemia reperfusion injury (Bi-IRI). Three months old WT mice were subjected to AKI induced by Bi-IRI and mice were sacrificed at Day 2. (A) Protein expression of LC3-I, LC3-II and p62 in the kidney of AKI mice. Upper panel: representative immunoblots for LC3, p62, and β-actin protein in the kidney. Bottom panel: summary of immunoblots from three independent experiments. (B) Immunofluorescence images for LC3 in the kidneys of transgenic GFP-LC3 mice at Day 2. Upper panel: representative LC3 (green) and Syto 61 (blue for nuclear stain). Scale bar = 50 μm. Bottom panel: the number of GFP-LC3 puncta per renal tubule (50 tubules analyzed per sample). Results are means ± SD from 5 independent experiments. Statistical significance was assessed by unpaired Student-t test, and accepted when *: P<0.05; **: P<0.01 between two groups for A and B. (C) Protein expression of αKlotho, LC3-I and LC3-II, and p62 in the kidney of mice with different genetic αKlotho levels at 6 weeks old without renal insult. Left panel: representative immunoblots for αKlotho, LC3-II/LC3-I, p62, and β-actin protein in the kidney. Right panel: summary of immunoblots from 4 independent experiments.
Results are means ± SD from 4 independent experiments. Statistical significance was assessed by one-way ANOVA followed by Student-Newman-Keuls test, and accepted when *: P<0.05; **: P<0.01 between two groups.

Supplementary Figure 3. Localization of LC3 punctas in renal tubular segments in AKI mice. RFP;GFP-LC3 reporter mice underwent 30-minute of ischemia followed by 24 hours reperfusion. The kidney sections were subject to immunofluorescent staining and photographed at 63x original amplification. (A) Lotus tetragonolobus lectin (LTL) staining in proximal convoluted tubules (PT). (B) Tamm-Horsfall protein (THP) staining in thick ascending limbs (TAL). (C) Na⁺-Cl⁻ cotransporter (NCC) staining in distal convoluted tubules (DT). (D) Calbindin D-28 (CB28) staining in later distal convoluted tubules. Scale bar = 50 mm. CB28: Calbindin D-28; DT: distal renal tubules; NCC: Na⁺-Cl⁻ cotransporter; PT: proximal tubules; TAL: thick ascending limbs; THP: Tamm-Horsfall protein.

Supplementary Figure 4. Kidney histology in kl/+, WT, and Tg-Kl mice underwent 30-minute of ischemia followed by 2 days reperfusion. The kidney sections were subject to HE staining and photographed at 40x original amplification. Considerable more necrosis (depicted by black arrows) were in the kidneys of kl/+ than WT mice. In the kidneys of Tg-Kl mice, most of proximal tubules (depicted by asterisks) were intact, whereas many cell debris and detached necrotic cells were in the proximal tubules of kl/+ mice compared to WT mice.

Supplementary Figure 5. 3-MA abolished αKlotho associated up-regulation of autophagy and protection of kidney cell against oxidative stress. OK cells were treated with H₂O₂ with or without 3-methyladenine (10 mM). In addition, recombinant αKlotho protein (0.4 nM) was added. (A) Lactate dehydrogenase (LDH) in supernatants released from OK cells was used for assessment of cell injury. (B) Protein expression of LC3-I, LC3-II, and p62 protein
in OK cells. Left panel: representative immunoblots for LC3-I and LC3-II, p62, and β-actin protein. Right panel: summary of immunoblots from three independent experiments. Data are means ± SD. (C) Representative immunocytochemistry for αKlotho (blue), LC3 (green) and phalloidin (red) in OK cells. OK cells were seeded on coverslips and transfected with GFP-LC3 plasmid. After 24 hours of transfection, cells were treated with H$_2$O$_2$ and/or 3-MA. Vehicle (upper panel) or recombinant αKlotho protein (bottom panel) was added to examine whether αKlotho suppresses cell injury induced by H$_2$O$_2$. Scale bar = 20 µm. (D) Quantification of the number of GFP-LC3 puncta per cell in OK cells (50 cells analyzed per sample). Results represent as means ± SD from three independent experiments. Statistical significance was assessed by one-way ANOVA followed by Student-Newman-Keuls test, and accepted when *: P<0.05; **: P<0.01 between two groups for A, B and D.

Supplementary Figure 6. Up-regulation of autophagy reduced collagen I accumulation in OK cells. OK cells were transfected with GFP-Col1 plasmid, and treated with autophagy inducers: LiCl (10 mM) or rapamycin (0.5 µM), and inhibitors: Baf (200 nM) or wortmannin (10 µM), and αKlotho protein. NaCl (10 mM) or DMSO (1/1000 dilution) were used as vehicle for control. Upper panel: Representative immunocytochemistry for Col1 (green) and phalloidin (red). Scale bar = 100 µm. Bottom panel: Collagen amount in OK cells was stained and quantified with Sirius red/fast green kit. Baf: Bafilomycin A1

Reference:

Supplementary Figure 1. Kidney pathology in CKD mice. WT mice at 3 months old were subjected to bilateral ischemia reperfusion injury (Bi-IRI), uninephrectomy and contralateral ischemia reperfusion injury (Npx-IRI), or laparotomy for Sham, and fed normal rodent chow or high Pi diet (2.0% Pi) respectively for 18 weeks starting 2 weeks after acute kidney insults. Representative micrographs of Periodic acid–Schiff (PAS) staining in the kidney sections from 4 animals of each group, scale bar = 100 mm. Upper panel: CKD mice were fed with normal phosphate rodent chow (NP); Bottom panel: CKD mice were fed with high phosphate rodent chow (HP).
Supplementary Figure 2. Autophagy flux in the kidney was up-regulated by bilateral ischemia reperfusion injury (Bi-IRI). Three months old WT mice were subjected to AKI induced by Bi-IRI and mice were sacrificed at Day 2. (A) Protein expression of LC3-I, LC3-II and p62 in the kidney of AKI mice. Upper panel: representative immunoblots for LC3, p62, and β-actin protein in the kidney. Bottom panel: summary of immunoblots from three independent experiments. (B) Immunofluorescence images for LC3 in the kidneys of transgenic GFP-LC3 mice at Day 2. Upper panel: representative LC3 (green) and Syto 61 (blue for nuclear stain). Scale bar = 50 mm. Bottom panel: the number of GFP-LC3 puncta per renal tubule (50 tubules analyzed per sample). Results represent as means ± SD from 5 independent experiments. Statistical significance was assessed by unpaired Student-t test, and accepted when *: P<0.05; **: P<0.01 between two groups for A and B. (C) Protein expression of aKlotho, LC3-I and LC3-II, and p62 in the kidney of mice with different genetic aKlotho levels at 6 weeks old without renal insult. Left panel: representative immunoblots for aKlotho, LC3-II/LC3-I, p62, and β-actin protein in the kidney. Right panel: summary of immunoblots from 4 independent experiments. Results represent as means ± SD from 4 independent experiments. Statistical significance was assessed by one-way ANOVA followed by Student-Newman-Keuls test, and accepted when *: P<0.05; **: P<0.01 between two groups.
Supplementary Figure 3. Co-localization of LC3 in the kidney of RFP;GFP-LC3 reporter mice underwent 30-minute of ischemia followed by 24 hours reperfusion. The kidney sections were subject to immunofluorescent staining and photographed at 63x original amplification. (A) Lotus tetragonolobus lectin (LTL) staining in proximal convoluted tubules (PT). (B) Tamm-Horsfall protein (THP) staining in thick ascending limbs (TAL). (C) Na\(^+-\)Cl\(^-\) cotransporter (NCC) staining in distal convoluted tubules (DT). (D) Calbindin D-28 (CB28) staining in later distal convoluted tubules. Scale bar = 50 \(\mu\)m. CB28: Calbindin D-28; DT: distal renal tubules; NCC: Na\(^+-\)Cl\(^-\) cotransporter; PT: proximal tubules; TAL: thick ascending limbs; THP: Tamm-Horsfall protein.
Supplementary Figure 4. Kidney histology in kl/+, WT, and Tg-KI mice underwent 30-minute of ischemia followed by 2 days reperfusion. The kidney sections were subject to HE staining and photographed at 40x original amplification. Considerable more necrosis (depicted by black arrows) were in the kidneys of kl/+ than WT mice. In the kidneys of Tg-KI mice, most of proximal tubules (depicted by asterisks) were intact, whereas many cell debris and detached necrotic cells were in the proximal tubules of kl/+ mice compared to WT mice.
Supplementary Figure 5. 3-MA abolished αKlotho associated up-regulation of autophagy and protection of kidney cell against oxidative stress. OK cells were treated with H2O2 with or without 3-methyladenine (10 mM). In addition, recombinant αKlotho protein (0.4 nM) was added. (A) Lactate dehydrogenase (LDH) in supernatants released from OK cells was used for assessment of cell injury. (B) Protein expression of LC3-I, LC3-II, and p62 protein in OK cells. Left panel: representative immunoblots for LC3-I and LC3-II, p62, and β-actin protein. Right panel: summary of immunoblots from three independent experiments. Data were expressed as means ± SD. (C) Representative immunocytochemistry for αKlotho (blue), LC3 (green) and phalloidin (red) in OK cells. OK cells were seeded on coverslips and transfected with GFP-LC3 plasmid. After 24 hours of transfection, cells were treated with H2O2 and/or 3-MA. Vehicle (upper panel) or recombinant αKlotho protein (bottom panel) was added to examine whether αKlotho suppresses cell injury induced by H2O2. Scale bar = 50 μm. (D) Quantification of the number of GFP-LC3 puncta per cell in OK cells (50 cells analyzed per sample). Results are means ± SD from three independent experiments. Statistical significance was assessed by one-way ANOVA followed by Student-Newman-Keuls test, and accepted when *: P<0.05; **: P<0.01 between two groups for A, B and D.
Supplementary Figure 6. Up-regulation of autophagy reduced collagen I accumulation in OK cells. OK cells were transfected with GFP-Col 1 plasmid, and treated with autophagy inducers: LiCl (10 mM) or rapamycin (0.5 mM), and inhibitors: Baf (200 nM) or wortmannin (10 mM), and αKlotho protein. NaCl (10 mM) or DMSO (1/1000 dilution) were used as vehicle for control. Upper panel: Representative immunocytochemistry for Col 1 (green) and phalloidin (red). Scale bar = 100 µm. Bottom panel: Collagen amount in OK cells was stained and quantified with Sirius red/fast green kit. Baf: Bafilomycin A1, Rap: rapamycin; Wort: wortmannin