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Despite improvedclinical care inpatientswithdiabetes,diabetic
complications remain a major healthcare burden. The man-
agement of cardiovascular risk factors, such as hyperlipidemia,
has improved through the availability of effective treatments,
andwith a greater proportionofpatients reaching lipid,BP, and
glycemic targets, the rates of incident diabetic cardiovascular
complications have declined over recent decades, although
there seems to be less effect on the burden of renal complica-
tions.1 Recent analysis of data from NHANES 1998–2014 also
highlighted the changing pattern of diabetic kidney complica-
tions, whereby a decline in the prevalence of albuminuria, the
classic feature of diabetic nephropathy, was observed, but itwas
accompanied by a rise in the prevalence of reduced renal func-
tion asmeasured by eGFR.2 Indeed, whereas diabetic nephrop-
athy is traditionally defined as the presence of proteinuria or
progression to ESRD, there is now increasing utilization of de-
creased renal function, as reflected by declined eGFR, in the
definition of diabetic kidney complications.2 Review of avail-
able global renal registry data reveals that most countries are
witnessing an increasing proportion of ESRD related to diabe-
tes.3 The marked increase in the prevalence of type 2 diabetes
(T2D); a change in epidemiology, with an increasing propor-
tion of young patients being affected; the improved survival
from cardiovascular complications; and the rather limited
number of renoprotective interventions currently available

have all contributed to an increasing global burden of diabetic
kidney disease (DKD).4,5

Given the great healthcare burden associated with diabetic re-
nal complications, there has been much interest in the search of
genetic factors for diabetic kidney complications. Earlier efforts
involved linkage studies and candidate gene–based studies, and the
advent of hypothesis–free genome–wide approaches is now provid-
ing additional motivation for genetic studies that may help unravel
underlying pathophysiologic pathways, identify novel drug targets
or drug indications, and explore the causal role of biomarkers and
the opportunity to project the long-term safety of drugs.6,7

The last decade has witnessed tremendous progress in the
identification of genetic factors for T1D and T2D, with now
.100 variants identified for T2D.8 Despite these advances, the
genetics of diabetes are still considered a geneticist’s nightmare,
and much of the heritability remains unexplained.9 For DKD,
the search for genetic factors has been even more challenging,
with decades of research yielding only a limited number of ge-
netic variants consistently found tobe associated, and so far, only
very few variants have been identified through genome–wide
association studies (GWASs) achieving genome-wide signifi-
cance10–12 (Figure 1). Some of the obstacles impeding progress
include the limited sample size in studies so far conducted,
the heterogeneity of the renal disease phenotype being stud-
ied due to the different definitions of diabetic nephropathy
being used in studies, and the restriction of genetic variants
being investigated to focus mainly on common genetic var-
iants. Furthermore, the presence of other pathologies (for exam-
ple, hypertensive glomerulosclerosis or other glomerulopathy)
and changes secondary to obesity, hypertension, and hyperlip-
idemia present added challenges, especially in the case of
kidney disease complicating T2D. Given these challenges, our
current understanding of the genetic architecture of DKD lags
far behind that of many other common diseases.

In this issue of the Journal of the American Society of Nephrol-
ogy, Sandholm et al.13 from the SUMMIT Consortium report
findings from one of the largest international collaborative ef-
forts in the search for genetic factors for DKD in T1D to date.
This major undertaking included.5000 individuals (2563 pa-
tients and 2593 controls) in the discovery GWAS and additional
samples in the replication phases.Whole-exome sequencingwas
performed in 997 subjects to explore the contribution of low-
frequency variants, and a wide range of definitions of DKD was
applied to examine potential association. Although no genetic
variants were identified to have association at genome-wide sig-
nificance, three variants (rs1989248 near CNTNAP2,
rs61277444 in PTPN13, and rs7562121 in AFF3) showed sug-
gestive evidence of association through joint meta-analysis of
data from two stages, with additional supporting evidence of
association for the AFF3 variant after additional de novo geno-
typing in phase 3. Notably, variants in AFF3 have already been
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reported in a previous GWASmeta–analysis, which included sub-
stantial overlap of study subjects from this one.14

This study provided the first large–scale estimate of herita-
bility of DKD in T1D using genotyping data (from the FinnDiane
Study in this case). The estimates of heritability obtained ranged
from 0.35 to 0.59 for the different DKD phenotypes, with an
estimate of 0.47 for ESRD heritability in T1D. These estimates
using the genetic markers captured on the genotyping arrays to
compare genetic similarity between individuals have yielded esti-
mates that are broadly similar to those generated from earlier
family studies.10

The study team has also conducted comprehensive evalu-
ation of variants previously reported in candidate gene–based
studies and GWASs of other forms of kidney diseases. In this
analysis, only a few of the previously reported variants for
diabetic nephropathy andCKDwere found to show significant
association, probably due to a combination of differences in
the population being examined (presence or absence of T1D
and differences in ethnicity) and the possibility of false posi-
tivity in some of the smaller earlier studies.

Interestingly, by constructing a weighted genetic risk score
for diabetes, obesity, hypertension, or lipid-related pheno-
types on the basis of 10–96 established loci for each pheno-
type from previous GWAS, the SUMMIT Consortium
investigators also examined the relationship between the ge-
netic risk for different cardiometabolic phenotypes and the
risk of DKD. A genetic risk score constructed from genetic
variants for obesity and body mass index was associated with
the risk of DKD, suggesting a possible causal role of obesity for

DKD, despite the study population consisting of only indi-
viduals with T1D. This finding highlights the potential con-
tribution of metabolic effects beyond hyperglycemia in the
pathogenesis of DKD and that a combination of metabolic
and hemodynamic factors is likely to be important for kidney
complications associated with T1D as well as T2D.15 This
finding is consistent with studies on the effects of obesity
and related cardiometabolic traits in DKD in T1D12 and the
pleiotropic effects of variants associated with diabetes and
obesity.8 Interestingly, a similar phenomenon was observed
in DKD of T2D, in which variants associated with glucose
traits or diabetes were associated with development and pro-
gression of DKD in subjects with T2D,16 highlighting the po-
tential overlap between genetic factors for DKD and diabetes.
Given the current global epidemic of obesity, this observation
has important clinical implications. Patients with T1D are
increasingly complicated by coexisting obesity and associated
metabolic abnormalities, which may accelerate the develop-
ment of kidney complications. Notably, multifactorial inter-
ventions, including weight loss, or targeting hyperglycemia,
hypertension, and hyperlipidemia have been found to be
associated with reduced development and progression of
DKD in patients with T2D.17–19 Application of LD score re-
gression confirmed high genetic correlation between the dif-
ferent DKD phenotypes examined but also gave support to
the epidemiologic observation of a link between cigarette
smoking and kidney disease in both T1D and T2D.20–22

Although traditional GWAS approaches have focused on
identifying single variants that reach stringent statistical

Figure1. Progress in the identificationofgenetic loci forDKD.The list of loci andeffectestimates arederivedmainly from ref. 10and theoriginal
studies cited. Loci with consistent association with the different definitions of DKD are included, with themajority of studies on the basis of DKD
being defined as ESRD. Most variants listed, with a few exceptions, have not achieved association at the genome–wide significance threshold.
Although the nearest gene to each variant has been indicated, the direct role of the gene listed has not been established at most of the loci.
*Discovered/replicated in studies in subjectswith T1D. #Discovered/replicated in studies in subjectswith T2D. ^Evidenceof sex difference in the
association signal, with significant association detected only for women.
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thresholds, it is increasingly appreciated thatuseful insights can
be gained from pathway- and network-based analyses using a
larger proportion of variants from these studies.23 Gene set
enrichment analyses of GWAS results in this study have re-
vealed the potential role of ascorbate and aldarate metabolism
in DKD and provide novel hypotheses for additional investi-
gation.

Despite these insights, much of the heritability of DKD
remains unexplained. Low-frequency variants have been pos-
tulated to contribute to the missing heritability of common
diseases, such as T2D, although a recent large–scale study
suggests that the contribution of low-frequency variants to
T2D risk is likely to be modest.8 In this study, whole-exome
sequencing was performed on 997 subjects with rapid onset
of macroalbuminuria or ESRD and controls with normal al-
bumin excretion rate despite long duration of T1D in an ex-
ploratory study. This found potential association between
variants in ERBB4 and ESRD, although other variants in
this gene have already been previously implicated through
earlier studies. As noted by the authors, a more comprehen-
sive evaluation of the role of low-frequency variants in DKD
will require much larger sample sizes. Epigenetic effects may
be another important component of the missing heritability.
Epigenetic programming is increasingly recognized as an im-
portant mechanism mediating developmental exposures and
effects24 and seems to play a key role in the legacy effect of
hyperglycemia.25

Where does this study leave us? Together with other inter-
national genetics research consortia, this study has highlighted
the need for large collaborative efforts to address the issue of
sample size. This is exemplified by the recent success from the
Juvenile Diabetes Research Foundation Diabetic Nephropathy
Collaborative Initiative, another major international collabo-
ration, and with genotype data from.15,000 individuals, the
largest study of genetics of DKD in T1D to date.26 Ongoing
efforts to develop platforms to facilitate large–scale genetic
analyses may help to address this challenge.27,28 The current
difficulty in being able to aggregate cohorts of sufficiently large
sample sizes and the paucity of functional genetic variants also
highlight the need to use additional datasets to gain biologic
insights into possible gene candidates and mechanisms. Un-
fortunately, renal transcriptomic data are not currently avail-
able from the Genotype-Phenotype Expression Project.29 The
availability of renal transcriptomic or eQTL data would be of
much value.30 Likewise, studies have increasingly used data
from different omics technologies, and collectively, these dif-
ferent approaches may help yield novel insights.12,31

Although this effort from the SUMMIT Consortium has
highlighted some of the challenges that face investigators tack-
ling this problem, the study also presented several approaches
that can help piece together this difficult puzzle. Although the
genetics of diabetic complications might justifiably be consid-
ered the worst of nightmares for geneticists, there does seem to
be ground for some optimism that, with larger studies under-
way and additional datasets being made available, we should

not be too far away from the dawnof somemajor breakthrough
in this quest.
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There is a remarkable interaction among the factors that in-
crease fibroblast growth factor 23 (FGF23) transcription in the

osteocyte and osteoblast, where they are individually and col-
lectively essential for the fine tuning of FGF23 expression
and secretion. Serum levels of the three hormones, PTH,
1,25(OH)2D, and FGF23, that regulate mineral and bone me-
tabolism are all markedly changed in chronic uremia and are all
associated with the systemic side effects of uremia. These hor-
mones all interact one with the other. FGF23 expression is reg-
ulated by factors, such as calcium, phosphate-to-pyrophosphate
ratio, acidosis, and other local and systemic factors, such as
estrogen, interleukins, leptin, iron, FGFs, cleaved Klotho,
1,25(OH)2D, and PTH.1 PTH activates the renal enzyme,
CYP27B1, that codes for the 25-hydroxyvitamin D 1a-
hydroxylase to convert 25-hydroxyvitamin D to its active form
1,25(OH)2D in the kidney. In contrast, FGF23 and 1,25(OH)2D
both inhibit the enzyme. 1,25(OH)2D increases serum FGF23
levels and decreases PTH. Both of these actions of 1,25(OH)2D
are at the transcriptional level. FGF23 itself acts on the parathy-
roid FGFR1-Klotho receptor to decrease PTH expression and
parathyroid cell proliferation, but in CKD, there is downre-
gulation of the parathyroid FGFR1-Klotho receptor and
FGF23 no longer decreases PTH.2,3 In CKD, the high PTH
levels of secondary hyperparathyroidism, the reduced serum
1,25(OH)2D levels, and the exuberant FGF23 levels are all
associated with and may exert systemic pathologic effects
on target organs, such as bone, neutrophils, the liver, and
the cardiovascular system. Both PTH and FGF23 act on
the kidney to cause phosphaturia and regulate renal calcium
reabsorption.

1,25(OH)2D acts on the osteocyte to increase FGF23 tran-
scription by increasing the binding of the 1,25(OH)2D/vitamin
D receptor (VDR) to a defined vitamin D–responsive element
(VDRE) in the FGF23 promoter.4 PTH potently increases
FGF23 transcription in vivo and in vitro.5 Therefore, PTH and
vitamin D both act to increase FGF23 levels. Nguyen-Yamamato
et al.6 in this issue of the Journal of the American Society of Ne-
phrology have now discovered another level of the interactions
of vitamin D and FGF23. They show that local osteoblastic con-
version of 25-hydroxyvitamin D to 1,25(OH)2D is an important
positive regulator of FGF23 production, particularly in uremia.
To do this, they compared serum FGF23 levels inwild-typemice
with those in mice with conditional osteoblastic deletion of
CYP27B1. Serum FGF23 levels were lower in the conditional
CYP27B1 knockout mice compared with wild-type mice, de-
spite normal circulating levels of vitamin D metabolites. In ex-
perimental uremia, there was a modest increase in serum
FGF23 in mice with osteoblastic deletion of CYP27B1 com-
pared with the marked increase in uremic wild–type mice and
no change in FGF23 mRNA levels. These results show the role
of local osteoblastic synthesis of 1,25(OH)2D in the enhanced
FGF23 production in uremia. This is consistent with the
findings in the work by Somjen et al.,7 which showed that
both 1,25(OH)2D and PTH increased CYP27B1 expression
in cultured human osteoblasts.

Mice with constitutive activation of PTH receptor signaling
in osteocytes exhibited increased bone mass and remodeling,
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