(Re)Building a Kidney

*Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine; †Department of Molecular Biology and ‡Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; §Division of Kidney, Urologic, & Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; ††Institute for Molecular Engineering, University of Chicago, Chicago, Illinois; †††Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri; ****Department of Stem Cell Biology and Regenerative Medicine and ‡‡‡‡Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ††††Trailhead Biosystems, Inc, Cleveland, Ohio; ‡‡‡Department of Biomedical Engineering, Tufts University, Medford, Massachusetts; §§Epstein Department of Industrial and Systems Engineering and Information Sciences Institute, Viterbi School of Engineering and ‡‡Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; †‖Cell Biology Theme, Murdoch Childrens Research Institute, Parkville, Melbourne, Australia; †¶¶††††Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Melbourne, Australia; †¶¶¶¶††††Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; †¶¶¶†¶¶¶Division of Nephrology and ‡¶¶¶Department of Bioengineering, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle; ‡¶¶¶Department of Internal Medicine, Division of Gastroenterology and ‡¶¶¶Department of Cell and Developmental Biology and Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan; §§§Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; †¶¶†¶¶¶¶Department of Surgery, Jesse Brown VA Medical Center, and †¶¶¶¶Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and †¶¶¶¶Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts

ABSTRACT

(Re)Building a Kidney is a National Institute of Diabetes and Digestive and Kidney Diseases-led consortium to optimize approaches for the isolation, expansion, and differentiation of appropriate kidney cell types and the integration of these cells into complex structures that replicate human kidney function. The ultimate goals of the consortium are two-fold: to develop and implement strategies for in vitro engineering of replacement kidney tissue, and to devise strategies to stimulate regeneration of nephrons in situ to restore failing kidney function. Projects within the consortium will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the kidney through directed differentiation of human pluripotent stem cells, which bioengineering or scaffolding strategies have the most potential for kidney tissue formation, and basic parameters of the regenerative response to injury. As these projects progress, the consortium will incorporate systematic investigations in physiologic function of in vitro and in vivo differentiated kidney tissue, strategies for engraftment in experimental animals, and development of therapeutic approaches to activate innate reparative responses.

By current clinical definitions, approximately 10% of the adult population of the United States suffers from CKD.1 Epidemiologic studies suggest a similar incidence worldwide, and as populations age it is clear that finding new therapies for kidney disease is a global health care priority.1 Kidney disease and injury affect diverse renal structures. Some, such as the proximal tubule, are regenerative and show highly proliferative responses to injury,2,3 whereas others, such as glomerular podocytes, do not.4 Recent advances in our understanding of tissue regeneration, stem cell biology, and bioengineering make it feasible to develop new strategies for restoring kidney function.

Published online ahead of print. Publication date available at www.jasn.org.

Correspondence: Dr. Leif Oxburgh, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, or Dr. Iain Drummond, Nephrology Division, Massachusetts General Hospital, Charlestown, MA 02129. E-mail: oxbur@mmc.org or idrummond@mgh.harvard.edu

Copyright © 2017 by the American Society of Nephrology

1370

ISSN : 1046-6673/2805-1370

THE (RE)BUILDING A KIDNEY CONSORTIUM

The (Re)Building a Kidney (RBK) consortium (www.rebuildingakidney.org) was formed by the National Institute of Diabetes and Digestive and Kidney Disease (NIDDK) in 2015 to coordinate and integrate research on strategies to restore kidney function on the basis of our understanding of kidney development, and the response of the adult organ to injury. The consortium focuses on two fundamentally different but complementary strategies that have the potential to transform our approach to treating kidney disease and solving the kidney shortage crisis. The first is to engineer and engract new kidney tissue. The second is to identify endogenous repair and regeneration processes in the injured kidney that can be exploited therapeutically. As depicted in Figure 1, the RBK aims to develop the tools, resources, and knowledge to (1) characterize fetal and adult human kidney cell types to determine which cellular phenotypes should be targets for directed differentiation of human induced pluripotent stem cells (iPSCs), (2) produce and characterize human kidney progenitor cells from pluripotent cells while optimizing systems for their propagation, (3) generate complex and well organized kidney tissue through controlled differentiation of natural and iPSC-derived kidney progenitor cells, (4) use biologic scaffolds to promote tissue assembly and growth, (5) connect filtering nephrons to tubule networks to act as conduits for urine, (6) interrogate the potential of cell therapy to repair kidney damage, and (7) exploit endogenous repair mechanisms in the adult kidney to enhance regeneration.

CLUES FROM KIDNEY DEVELOPMENT: GENERATING COMPLEX KIDNEY STRUCTURES FROM HUMAN iPSCs

Within the consortium, protocols on the basis of recapitulating renal development have been adopted to coach human iPSC lines to form human kidney organoids. These organoids have been shown to contain all of the anticipated components of the fetal human kidney, including patterned and segmented nephrons, collecting ducts, renal interstitium, and endothelium (Figure 2). As with protocols for the directed differentiation of iPSC to other human tissues (reviewed in Clevers9), morphology and gene expression of organoid-derived kidney cells, including nephron and stromal progenitors, podocytes, proximal tubules, distal tubules, and endothelium. Rigorously defined human kidney cell transcriptional signatures as well as cell injury markers derived from single-cell RNA sequencing and MARIS will be essential for organoid and cell type quality control and to establish baseline phenotypes for further functional characterization, disease modeling, and potential therapeutic use. (3) Scaffold tissue assembly: multiple approaches, including decellularized kidneys, silk, and synthetic polymers, and three-dimensional printed arrays of nephron tubules and blood vessels, will be tested to generate structures into which differentiated kidney cells or organoids can be seeded, instructed to differentiate, and interconnect nephron tubules to form functioning kidney tissue with the potential to replace failed kidney function. (4) Cell therapy/reinjury and regeneration factors: defined growth factor activities optimized for progenitor cell self-renewal and organoid differentiation as well as for directed differentiation of renal cell types will be integrated into new approaches to promote endogenous repair of nephrons. Adult kidney podocyte and interstitial progenitor cells will be profiled and characterized to develop new therapies for advanced kidney damage. Contributions of nonepithelial cells, the endothelium, interstitium, and pericytes/vascular smooth muscle to kidney cell differentiation will also be assayed and modeled using fluorescent reporter lines and coculture with nephron cells in two-dimensional and three-dimensional cultures. ESC, embryonic stem cell lines.
expression analysis suggests that kidney organoids represent first trimester human tissue. The presence of derivatives of all major progenitors (cap mesenchyme, ureteric bud, vascular progenitors, and stroma) suggests that these organoids could represent a promising source of human kidney tissue, although nephrons within the organoids are not fully differentiated and lack functioning vasculature.

The ability to evaluate similarities between individual cell types present within iPSC-derived kidney organoids and the corresponding cells in human kidney is a high priority for the consortium. Although the transcriptional characterization of metanephric mouse kidney cells is well established, and the core pathways controlling nephrogenesis may be orthologously conserved, differences in gene expression presumably underlie important differences in renal architecture and function between mouse and human kidneys. Thus, a key objective of the RBK is to generate a comprehensive gene expression database of the human kidney against which tissue derived from iPSCs can be compared. A rigorous microanatomic map will be established through RNA sequencing at the single cell level and exhaustive in situ hybridization analysis.

New and powerful technologies for the capture of single cells are being used such as methods for analyzing RNA following intracellular sorting (MARIS), in which fixed cells are FACS-isolated for RNA sequencing on the basis of expression of intracellular antigens.

Achieving high-throughput efficiency in optimizing kidney organoid formation will require reliable and rapid means to detect the differentiation of different renal cell types. Currently there is a paucity of human iPSC lines expressing reporters of cellular differentiation suitable for the development of directed differentiation protocols for kidney. Capitalizing on knowledge gained from mouse and human kidney cell-type specific gene expression, fluorescently tagged human iPSC reporter lines are being generated using CRISPR/Cas9 gene editing approaches. These will allow both live imaging of ex vivo kidney differentiation and the isolation and transcriptional profiling of organoid-derived progenitors of the nephron, collecting duct, and stromal lineages, as well as differentiated podocytes, proximal tubules, and distal tubules. It is interesting to note that kidney organoids generated from human iPSC spontaneously form endothelial cell networks with accompanying perivascular cells. Although evidence exists for self-assembly of glomerular capillaries within some organoid glomeruli, the majority remain avascular. Endothelial reporter iPSC lines are being generated to facilitate the isolation and characterization of this endothelium for comparison with the profiles of endogenous embryonic mouse kidney endothelium and human embryonic kidney tissue.

Key concerns in developing a directed differentiation protocol are robustness and reproducibility; i.e., it is essential to determine a differentiation strategy that can be transferred from one stem cell line to another with reproducible outcomes in terms of organoid gene expression profiles and cellular complexity. With these concerns in mind, substantial focus is placed on sources of variation and the transferability of the approach between iPSC lines. Within the consortium, a Quality-by-Design strategy is used to establish strict parameters for each component in the directed differentiation process. This strategy allows for >12 dimensions within a design space in which morphogens and growth factors are tested simultaneously and interactions between individual signaling pathways can be determined. The end point of the experiment is expression analysis of >50 markers of renal

Figure 2. iPSC-derived kidney organoids contain all components of the fetal human kidney, including patterned and segmented nephrons, collecting ducts, renal interstitium, and endothelium. Comparison of mature and developing cell types between normal human fetal kidney (left) and iPSC-derived kidney organoids (right). Structures: CD, collecting duct; Endo, endothelium; Glom, glomerulus; PC, perivascular cell; PT, proximal tubule; SSB, s-shaped body nephron; STR, stroma. Markers: CALB1, collecting duct in early kidney and mature distal tubule in nephrons; CD31, endothelial cells; CUBN, proximal tubule; DAPI, nuclei; ECAD, distal epithelial cells; GATA3, collecting duct; KRT8, collecting duct in early kidney and mature distal tubule in nephrons; LTL, proximal tubule; MAFB, podocytes and glomeruli; MEIS1, interstitial cells; NPHS1, podocytes; PAX2, collecting duct and nephron; PDGFRa, pericytes; SOX17, endothelial cells. Images of human fetal kidney supplied by McMahon laboratory (Tracy Tran and Nils Lindström). Images of human iPSC-derived kidney organoid supplied by Little laboratory (Han Chiu, Minoru Takasato, Pei Er, Jessica Vanslambrouck, and Sara Howden).
cell types, enabling evaluation of subtle differences between differentiation states. Robust differentiation protocols developed using this approach will be particularly important in disease modeling applications where uniform organoid composition is essential for reproducibility of high-throughput drug screening.

Understanding how human renal progenitor cells may be propagated in their undifferentiated state to numbers sufficient for trials of scaffolding and recellularization of organs is an important goal of the consortium. On the basis of in vitro mouse work that identified a cocktail of factors that mimic the in vivo renal progenitor cell niche,17 efforts are currently focused on methods to culture and provide a source of phenotypically normal human nephron progenitor cells (NPCs) sufficient to generate synthetic kidney tissue scaled to the human. Both monolayer and aggregate culture technologies have shown promise in propagating NPCs, and procedures have been reported for both propagation of mouse and human cells.18,19 Comparisons of these culture methods have revealed that they differ in their capacities to propagate cells from different developmental stages, and that propagation conditions also may skew the differentiation potential of cells, particularly the glomerular podocyte. The NPC resides within a niche in vivo, and studies are being carried out to understand the extracellular environment that confines highly motile NPCs within the cap mesenchyme, yet allows differentiation to all nephronal cell types.20

Although the self-organization of the iPSC-derived organoid provides an attractive solution to generating tissue containing all relevant cell types in vitro, it may be difficult to generate sufficient tissue volumes using this method. A complementary strategy for building new kidney tissue is to recombine specific cell types of the developing kidney in appropriate proportions and in appropriate locations within biologic scaffolds. One possible strategy to generate the distinct cell types that are required is to isolate them from iPSC-derived organoids and devise culture methods to expand them. An alternate approach is to differentiate each of the individual cell types in isolation for use in building synthetic tissue. Protocols have been reported to differentiate ureteric bud cells,21 NPCs,6,22 podocytes,23 and tubular epithelial cells.24 To date, no attempts have been reported to recombine these distinct cell types to form kidney tissue, and this presents a fascinating future challenge for the consortium.

PUTTING THE PIECES TOGETHER: SCAFFOLDING APPROACHES FOR BUILDING HUMAN KIDNEY TISSUE

Another priority within the RBK is exploring different approaches to generate synthetic kidney tissue that could then be transplanted into a host (Figure 3). In one approach, purified silk is being used to generate structures into which kidney cells derived from directed differentiation can be seeded and instructed to differentiate into mature kidney structures.25 A second approach, also on the basis of the use of polymers, involves three-dimensional printing arrays of nephron tubules that can be layered to establish tissue.26 A third approach, is the recellularization of decellularized kidneys,27 for which transplant donor kidneys that do not fulfill quality control criteria constitute a plausible source. A fourth complementary approach aims to engineer extracellular matrix to maximize retention and presentation of relevant growth factors.28

Each of these approaches has distinct advantages. Scaffolds made from silk are extremely robust, and can easily be sterilized by autoclaving, modified with growth factors, and manipulated for engraftment.25 Also, silk is in regular surgical use, suggesting minimal regulatory hurdles for clinical application. Printing of nephrons has the advantage that structures can be easily organized in the stereotypic pattern seen in vivo, which is important for physiologic function.29 Adult decellularized organs provide the complex extracellular matrix environment required for attachment and function of differentiated kidney cell types.27,30 Engineering the matrix to present growth factors in a spatially organized fashion provides another approach to drive organoid differentiation on a larger scale.28 The ultimate scaffold- ing solution may incorporate aspects of each of these bioengineering approaches. Further, it is important that the systems are also considered in the context of future needs in vivo to maximize translation potential for the work in the consortium.

Development of renal blood vessels is essential for the generation of functional nephrons, whether within bioengineered tissue or organoids.31–33 Recent results reveal that there is a surprising heterogeneity in endothelial cell gene expression within the developing kidney. How spatial and temporal differences in endothelial cell phenotype might affect nephron progenitor self-renewal or differentiation is an important and understudied area. Furthermore, regeneration of the nephron will require both pericytes and vascular smooth muscle cells for stabilizing capillaries and larger vessels, respectively. The consortium is developing approaches for proper vascularization of organoids seeded in silk or other three-dimensional scaffolds by (1) generating primary and conditionally immortalized Gli1-positive mesenchymal stem cells (e.g., interstitial pericytes and perivascular fibroblasts), (2) developing methods for pericyte and vascular smooth muscle cell differentiation, (3) determining transcriptional profiles and molecular signatures of endothelial cell classes, and (4) identifying endothelial cell signals and crosstalk with interstitial and epithelial cells that affect kidney differentiation or proliferation within synthetic kidney tissue.

The patterning of the kidney stroma and interstitium is likely to be an essential event in the functional development of the nephrons. The renal interstitium arises along the cortical–medullary axis from two distinct progenitor
populations marked by Foxd1 and Tbx18; the Tbx18-positive population gives rise to the interstitium surrounding the ureter, the renal pelvis, and some of the papilla, whereas Foxd1-positive progenitors give rise to the remaining interstitium, including the pericytes, peritubular fibroblasts, and mesangial cells. Loss of the Foxd1-positive cell population affects the development of kidney tubules and vasculature nonautonomously, and it seems likely that different interstitial zones could establish distinct molecular niches, affecting the final differentiation and function of kidney epithelia and endothelia. Also, much of the endocrine function of the kidney, including the production of renin and erythropoietin, is performed by interstitial cells that must be recapitulated in efforts to engineer or regenerate kidney tissue. With the goal of understanding interstitial cell differentiation, fluorescent reporter mouse strains are being generated with the purpose of isolating interstitial cell types, and techniques are being developed for coculture with nephron and endothelial cells both in two-dimensional culture and three-dimensional silk scaffolds. Transcriptional profiles derived from interstitial cell subpopulations should yield important insights into interstitial cell patterning and signaling roles.

To take full advantage of newly generated iPSC-derived replacement tissue to restore kidney function, filtering nephrons must connect to a collecting duct network to pass fluid. In kidney development, new nephrons derived from S-shaped bodies fuse lumens with the branched collecting system to generate functioning nephrons. The signals guiding epithelial cells to invade an existing tubule, rearrange cell junctions, and form a new patent lumen are not known. The regenerating zebrafish kidney provides a quantitative model to test signaling pathways required for tubule invasion and nephron fusion. After injury, the adult fish kidney regenerates by a stem cell–mediated process, creating new nephrons that fuse to existing branched collecting ducts. The consortium is taking genetic and pharmacologic approaches to manipulating cell signaling during this process and translating new insights to how nephrons can be directed to “plumb into” existing collecting duct networks.

Figure 3. Multiple different bioengineering approaches to generating tissue scaffolds offer unique advantages for rebuilding kidney tissue. Polymer-based (A and B), decellularized tissue (C and D), and organ-on-a-chip (E and F) approaches are shown. (A) Scanning electron micrograph of 6% silk scaffold before cell seeding; a network of channels is formed into which NPCs can be seeded. Photo: Jeannine Coburn. (B) E-cadherin (epithelial cells) and DAPI (nuclei) staining reveals a network of tubules with lumens within the silk approximately 2 weeks after seeding NPCs. Photo: Jessica Davis-Knowlton. (C) Scanning electron micrograph of decellularized kidney tissue showing the extracellular matrix framework for tubules and glomeruli. Photo: Joseph Uzarski. (D) Immunostaining of a decellularized kidney that has been recellularized with MDCK cells 7 days after cell seeding. E-cadherin (green) and luminal cilia (acetylated tubulin, red) demonstrate epithelialization. Photo: Joseph Uzarski. (E) Schematic and top view picture of a vascular network-on-a-chip device that allows flow through the network via inlet (i) and outlet (o). Photo: Zheng laboratory. (F) An example view of a three dimensional microvessel network formed by mouse kidney endothelial cells. Red: CD31, blue: DAPI. The inset shows fluorescence immunostaining of a device in which podocytes (green) were cocultured with the vascular endothelial network (red). Photo: Zheng laboratory. EHT, extra high tension voltage setting; WD, working distance.
ENHANCING ENDOGENOUS REPAIR

Understanding mechanisms of endogenous repair remains an important goal for regenerative nephrology. The consortium aims to understand cell-specific injury responses and the potential of adult progenitors to repair damaged kidney through regenerative processes. The proximal tubule epithelium has a robust capacity for repair after injury through the proliferative potential of surviving proximal tubule cells. A goal of the consortium is to determine whether dedifferentiation confers unique functional properties or tubulogenic potential on proximal tubule cells and to define the transcriptional profiles of these cells during the full course of repair. Cell types of particular interest include injured and dedifferentiated proximal tubule cells (defined by expression of Haver1), interstitial pericytes and perivascular fibroblasts (defined by expression of Gli1), and cells of the renin lineage. These studies will also help inform efforts to generate high-quality kidney organoids by providing transcriptional snapshots of injured versus healthy proximal tubule cells.

Adult podocytes are injured in many forms of glomerular diseases and show very little, if any, ability to self-replicate. However, there are two podocyte cell progenitor populations under study in the consortium: the glomerular parietal epithelial cells and cells of the renin lineage. Inducible reporter mice have enabled lineage tracing of both podocyte progenitor types under normal and experimental disease states. Isolation of each cell type is being performed to derive their transcriptional profiles with the goal of defining regulatory mechanisms controlling podocyte progenitor differentiation in health and disease. The cells will also be used to develop microfluidic “organs-on-chips,” to provide efficient, reproducible, and cost-effective multicellular cell culture models in native matrices. A goal of the consortium is to produce bioengineered kidney tubules to the collecting system remain important challenges in advancing renal replacement therapy. The kidney vasculature represents a variety of unexplored endothelial cell subtypes that may affect nephron differentiation through reciprocal signaling events. (A) In the developing mouse kidney, vascular progenitor endothelial cells positive for Pecam (PE)/CD31 (green) are intimately associated with the nephrogenic cortical fetal kidney domain populated by Six2-positive nephrogenic progenitor cells (red). E-cadherin (white) marks polarized epithelium of the branching ureter tips. Photo: Edward Daniel. (B) Kidney injury and fibrosis represents a major barrier to regeneration. Kidney injury recruits myofibroblasts, leading to fibrosis and CKD. Kim-1 immunostaining (green) identifies injured and dedifferentiated human proximal tubule whereas PDGFRb immunostaining reveals activated adjacent interstitial kidney fibroblasts (red). Photo: Monica Chang-Panesso and Farid Kadyrov. (C) Nephron interconnection is an essential process in generating a filtering kidney. New insights from the regenerating zebrafish kidney, where many new nephrons are added to the existing collecting system, can help define signaling pathways that stimulate cell rearrangements that lead to interconnected tubule lumens. The Ihx1a:GFP transgene (green) marks new nephron cell projections, or invadopodia (arrowheads), that penetrate the collecting system as a prelude to interconnection. Photo: Caramai N. Kamei. CD, Collecting duct; nN, new nephron; blue fluorescence, DAPI nuclear stain.

Figure 4. Integration of vasculature, overcoming kidney fibrosis, and connecting bioengineered kidney tubules to the collecting system remain important challenges in advancing renal replacement therapy.
unit and provide a platform to examine replacement of depleted adult podocytes by local stem/progenitor cells: the glomerular parietal epithelial cells and cells of the renin lineage.

CONSORTIUM ORGANIZATION

The current composition of the consortium is described on the RBK website (www.rebuildingakidney.org). The consortium will continue to add new members and ideas through a Partnership Project Program administrated by the RBK coordinating center. Requests for applications in research areas that complement ongoing consortium studies will be announced annually. The coordinating center is a central data and resource repository for the consortium and the broader research community. On the basis of current consortium projects, the following types of data will be provided. Gene expression: RNA sequencing data will be uploaded to the National Center for Biotechnology Information Gene Expression Omnibus and links will be provided on the RBK website. In addition, the following will be archived and made publically available on the RBK website. Protocols: detailed protocols covering new methods developed in the RBK consortium. Examples include iPSC differentiation procedures, methods to generate biomaterials for use as scaffolds for kidney tissue, validation of quantitative PCR for marker genes to identify key cell types and stages of differentiation. Reagents: databases for growth factor and small molecules for use as scaffolds for kidney tissue, validation of quantitative PCR for marker genes to identify key cell types and stages of differentiation. Reagents: databases for growth factor and small molecules for use as scaffolds for kidney tissue, validation of quantitative PCR for marker genes to identify key cell types and stages of differentiation. Reagents: databases for growth factor and small molecules for use as scaffolds for kidney tissue, validation of quantitative PCR for marker genes to identify key cell types and stages of differentiation. Reagents: databases for growth factor and small molecules for use as scaffolds for kidney tissue, validation of quantitative PCR for marker genes to identify key cell types and stages of differentiation.

RBK CONSORTIUM TRAJECTORY: FUTURE CHALLENGES

This review provides a snapshot of the consortium in its present form. As the individual projects within the consortium progress, the focus of the program will evolve. Advances made during the initial phase will answer fundamental questions regarding human gene expression in the developing kidney, essential signaling crosstalk between distinct cell types of the developing kidney, how to derive the many cell types of the human kidney through directed differentiation, which scaffolding strategies have the most potential for kidney tissue formation in vitro, and basic parameters of the regenerative response to injury. In the next phase we anticipate focusing on physiologic function of in vitro and in vivo differentiated kidney tissue, systematic investigation of strategies for integration of urinary and vascular conduits between graft and host in experimental animal systems, and development of therapeutic approaches to promote innate reparative responses (Figure 4).

ACKNOWLEDGMENTS

We would like to thank Allie Ware for designing Figure 1.

Research reported in this publication is supported by the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases under award numbers U01DK094526 (A.P.M.), 1UH2DK107374 (B.D.H.), R24DK106743 (O.C., D.L.K., L.O., and T.J.C.), U01DK107350 (C.K., S.J., M.T.V., and S.J.), UH2DK107321 (H.A.D.), UH2DK107357 (J.J. and O.W.), UH2DK107344 (M.H.L.), DP3DK108215 (J.A.H.), U01DK107350 (S.J.), and UH2DK107343 (S.J.S. and Y.Z.). Research is also supported by the US Department of Veterans Affairs under award number 101BX002660 (J.A.W.).

The content is solely the responsibility of the authors and does not necessarily represent the official views of either funding organization.

DISCLOSURES

The following authors declare that they have no financial conflict of interest: B.D.H., C.J.K., C.K., D.K.H., D.L.K., D.R.G., I.A.D., J.A.H., J.A.W., J.R.S., L.O., M.T.V., O.C., O.W., S.J., S.J.S., T.J.C., and Y.Z. A.P.M. receives royalty income from Harvard University (Cambridge, MA) for licensing agreements around the Hedgehog pathway, and receives research support from Biogen (Cambridge, MA) on kidney disease mechanisms. J.J. owns stock in the following companies for activities as a founder and inventor: Alive Technologies Group, LLC (Cleveland, OH) and Tailhead Biosystems (Cleveland, OH). M.H.L. has received research contract income from and consulted for Organovo Inc (San Diego, CA).

REFERENCES

6. Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV: Nephron organoids derived from human pluripotent stem cells...
7. Takasaka M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH: Dir-
ecting human embryonic stem cell differ-
etiation towards a renal lineage generates a
126, 2014.
8. Takasaka M, Er PX, Chiu HS, Maier B, Baillie
GJ, Ferguson C, Parton GW, Wolgang EJ, Roost
MS, Chua de Sousa Lopes SM, Little
MH: Kidney organoids from human iPSC cells
contain multiple lineages and model human
9. Clevers H: Modeling development and dis-
ease with organoids. Cell 165: 1586–1597,
2016
10. O’Brien LL, Guo Q, Lee Y, Tran T, Benazet
JD, Whitney PH, Valouev A, McMahon AP:
Differential regulation of mouse and human
nephron progenitors by the six family of
transcriptional regulators. Development 143:
11. Hrvatin S, Deng F, O’Donnell CW, Gifford
DK, Melton DA: MARIS: Method for analyz-
ing RNA following intracellular sorting. PLoS
12. Howden SE, Maufort JP, Duffin BM, Elefanty
AG, Stanley EG, Thomson JA: Simultaneous
reprogramming and gene correction of pa-
tient fibroblasts. Stem Cell Rep 7: 519–
526, 2016
13. Kao T, Labonne T, Niclas JC, Chaurasia R,
Lokmic Z, Qian E, Bruevers FF, Howden SE,
Motazedian A, Rieschel J, Costa M, Souri-
K, Ng E, Anderson D, Giudice A, Farlie P,
Cheung M, Lamande SR, Penington AJ,
Parish CL, Thomson LH, Rafi A, Elliott DA,
Elefanty AG, Stanley EG. GAPTrap: A simple
system program for pluripotent stem cells
and their derivatives. Stem Cell Rep 7: 518–
526, 2016.
14. Orlova VV, van den Hil FE, Petrus-Reurer S,
Drabch Y, Ten Dijke P, Mummery CL: Gen-
eration, expansion and functional analysis of
endothelial cells and pericytes derived from
human pluripotent stem cells. Nat Protoc 9:
1514–1531, 2014
15. Schachter B: Therapies of the state. Nat
16. Rathore AS, Winkle H: Quality by design for
34, 2009
17. Brown AC, Muthukrishnan SD, Oxburgh L:
A synthetic niche for nephron progenitor cells.
18. Tanigawa S, Taguchi A, Sharma N, Perantoni
AO, Nishinakamura R: Selective in vitro propaga-
tion of nephron progenitors derived
from embryos and pluripotent stem cells [published online ahead of print
April 13, 2016]. Cell Rep 10:1016/j.cel-
rep.2016.03.076
19. Li Z, Aroaka T, Wu J, Liao HK, Li M, Lazo M,
Zhou B, Sui Y, Wu MZ, Tamura I, Xia Y, Beyret
E, Matsusaka T, Pastan I, Rodriguez Esteban
C, Guillon I, Guillon P, Campistol JM, Izipisa
Belmonte JC: 3D culture supports long-term
expansion of mouse and human nephro-
genic progenitors. Cell Stem Cell 19: 516–
529, 2016.
20. Das A, Tanigawa S, Kanner CM, Xin M, Lum L,
Chen C, Olson EN, Perantoni AO, Carroll TJ:
Stromal-epithelial crosstalk regulates kidney
progenitor cell differentiation. Nat Cell
21. Xia Y, Nivet E, Sancho-Martinez I, Gallegos T,
Suzuki K, Okamura D, Wu MZ, Dubova I,
Esteban CR, Montserrat N, Campistol JM,
Izipisa Belmonte JC: Directed differentia-
tion of human pluripotent cells to ureteric
bud kidney progenitor-like cells. Nat Cell
22. Lam AQ, Freedman BS, Morizane R, Lerou
PH, Valerius MT, Bonventre JV: Rapid and
efficient differentiation of human pluripotent
stem cells into intermediate mesoderm that
forms tubules expressing kidney proximal tubular
1225, 2014
23. Sharrin S, Taguchi A, Kaku Y, Yoshimura Y,
Ohmori T, Sakuma T, Mukoyama M,
Yamamoto T, Kurihara H, Nishinakamura R:
Human induced pluripotent stem cell-
derived podocytes mature into vascularized
glomeruli upon experimental transplanta-
1791, 2016
24. Kaminski MM, Tosic J, Kresbach C, Engel
H, Klockenbusch J, Muller AL, Pichler R,
Huber TB, Walz G, Arnold SJ, Lienkamp SS: Direc-
ted reprograming of fibroblasts into renal
tubular epithelial cells by defined transcrip-
1280, 2016
Kaplan DL: Silk biomaterials with vasculari-
zation capacity. Adv Funct Mater 26: 421–
436, 2016
26. Homan KA, Kolesky DB, Skylar-Scott MA,
Herrmann J, Obuobi H, Moisan A, Lewis JA:
Bioprinting of 3D confluent renal proximal tubules on perfusable chips. Sci Rep 6:
34845, 2016
27. Uzarski JS, Bijonowski BM, Wang B, Ward
HH, Wandinger-Ness A, Miller WM, Wertheim
JA: Dual-purpose bioreactors to monitor
nonspecific physiological and biochemical markers of
kidney and liver scaffold recellularization.
Tissue Eng Part C Methods 21: 1032–1043,
2015
28. Martino MM, Bripez Q, Maruyama K, Hubbell JA:
Extracellular matrix-inspired growth factor delivery systems for bone re-
2015
29. Kolesky DB, Truby RL, Gladman AS, Busbee
TA, Homan KA, Lewis JA: 3D bioprinting of
vascularized, heterogenic cell-laden tis-
ue constructs. Adv Mater 26: 3124–3130,
2014
30. Caralt M, Uzarski JS, Jacobs S, Oberberg KP,
Berg N, Bijonowski BM, Kiefer KM, Ward HH,
Wandinger-Ness A, Miller WM, Zhang ZJ,
Aecassis MM, Wertheim JA: Optimization
and critical evaluation of decellularization
strategies to develop renal extracellular ma-
tix scaffolds as biological templates for or-
gan engineering and transplantation. Am J
Transplant 15: 64–75, 2015
31. Dimke H, Mazaeva Y, Quagggin SE: Crosstalk
glomerular injury and repair. Curr Opin
Nephrol Hypertens 24: 231–238, 2015
32. Dimke H, Sparks MA, Thomson BR, Frische S,
Coffman TM, Quagggin SE: Tubulovascular
cross-talk by vascular endothelial growth
factor a maintains peritubular microvascu-
1038, 2015
33. Kitamoto Y, Tokunaga H, Tomita K: Vascular
endothelial growth factor is an essential
molecule for mouse kidney development:
Glomerulogenesis and nephrogenesis. J Clin
Invest 99: 2351–2357, 1997
34. Levinson RS, Batourina E, Choi C, Vorontchikha
M, Kitajewski J, Mendolsohn CL: Foxd1-
dependent signals control cellularity in
the renal capsule, a structure required for normal
renal development. Development 132: 529–
539, 2005
35. Arik R, Bussen M, Singh MK, Petry M, Kispert
A: Tbx18 regulates the development of the
ureteral mesenchyme. J Clin Invest 116:
663–674, 2006
36. Kobayashi H, Liu Q, Binns TC, Urrutia AA,
Davidoff O, Kaptisinos PP, Pfaff AS, Olason
H, Werner A, Fogo AB, Fong GH, Gross
WK, Haase VH: Distinct subpopulations of
FOXD1 stroma-derived cells regulate renal
erythropoietin. J Clin Invest 126: 1926–1938,
2016
37. Kao RM, Vasilyev A, Miyawaki A, Drummond
IA, McMahon AP: Invasion of distal nephron
precursors associates with tubular intercon-
nection during nephrogenesis. J Am Soc
38. Georgas K, Rumballe B, Valerius MT, Chiu
HS, Thiaagarad RN, Lesieur E, Aronow BJ,
Brunsik EW, Combes AN, Tang D, Taylor D,
Grimmer SM, Potter SS, McMahon AP,
Little MH: Analysis of early nephron pat-
terning reveals a role for distal RV pro-
liferation in fusion to the uretic tip via a cap
mesenchyme-derived segmenting segment.
39. Diep CQ, Ma D, Deo RC, Holm TM, Naylor
RW, Arora N, Wingert RA, Bollig F, Djordjevic
G, Lichman B, Zhu H, Ikenaga T, Ono F,
Englert C, Cowan CA, Hukriede NA, Handin
RI, Davidson AJ: Identification of adult
nephron progenitors capable of kidney re-
generation in zebrafish. Nature 497: 95–100,
2011
40. Humphreys BD, Xu F, Sabbisetti V, Grigic I,
Movahedi Naini S, Wang N, Chen G, Xiao S,
Patel D, Henderson JM, Ichimura T, Mou S,
Soeung S, McMahon AP, Kuchroo VK,

