Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial

Christoph Wanner,1 Hiddo J.L. Heerspink,2 Bernard Zinman,3 Silvio E. Inzucchi,4 Audrey Koitka-Weber,1,5,6 Michaela Mattheus,5 Stefan Hantel,7 Hans-Juergen Wöerle,8 Uli C. Broedl,5 Maximilian von Eynatten,5 and Per-Henrik Groop,6,9,10,11 on behalf of the EMPA-REG OUTCOME Investigators

Due to the number of contributing authors, the affiliations are listed at the end of this article.

ABSTRACT

Background Empagli flozin slowed the progression of CKD in patients with type 2 diabetes and cardiovascular disease in the EMPA-REG OUTCOME Trial. In a prespecified statistical approach, we assessed treatment differences in kidney function by analyzing slopes of eGFR changes.

Methods Participants (n=7020) were randomized (1:1:1) to empagliflozin 10 mg/d, empagliflozin 25 mg/d, or placebo added to standard of care. We calculated eGFR slopes using random-intercept/random-coefficient models for prespecified study periods: treatment initiation (baseline to week 4), chronic maintenance treatment (week 4 to last value on treatment), and post-treatment (last value on treatment to follow-up).

Results Compared with placebo, empagliflozin was associated with uniform shifts in individual eGFR slopes across all periods. On treatment initiation, adjusted mean slope (eGFR change per week, ml/min per 1.73 m²) decreased with empagliflozin (−0.77; 95% confidence interval, −0.83 to −0.71; placebo: 0.01; 95% confidence interval, −0.08 to 0.10; P<0.001). However, annual mean slope (ml/min per 1.73 m² per year) did not decline with empagliflozin during chronic treatment (empagliflozin: 0.23; 95% confidence interval, 0.05 to 0.40; placebo: −1.46; 95% confidence interval, −1.74 to −1.17; P<0.001). After drug cessation, the adjusted mean eGFR slope (ml/min per 1.73 m² per week) increased and mean eGFR returned toward baseline level only in the empagliflozin group (0.56; 95% confidence interval, 0.49 to 0.62; placebo −0.02; 95% confidence interval, −0.12 to 0.08; P<0.001). Results were consistent across patient subgroups at higher CKD risk.

Conclusions The hemodynamic effects of empagliflozin, associated with reduction in intraglomerular pressure, may contribute to long-term preservation of kidney function.

The prevalence of diabetic kidney disease continues to rise and is predicted to affect 200 million people around the world by 2040.1 Although improved glycemic control and widespread use of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) have contributed to an improved prognosis for patients with diabetic kidney disease, their renal and cardiovascular risks remain high, underscoring the need for novel therapeutic interventions.

Empagliflozin, a selective sodium glucose co-transporter 2 (SGLT2) inhibitor, has been shown to reduce hyperglycemia, BP, and body weight in patients with type 2 diabetes.2,3 In the EMPA-REG OUTCOME Trial, empagliflozin markedly decreased the risk of clinically important cardiovascular
events (in particular, the risk of cardiovascular death), and in further hypothesis-generating analyses, it delayed the progression of CKD in people with type 2 diabetes and established cardiovascular disease.4,5

The beneficial kidney effects associated with empagliflozin are thought to be mediated by various mechanisms, including restoration of tubuloglomerular feedback leading to a reduction in intraglomerular pressure and hyperfiltration.8 Both conditions are considered core components of the pathophysiology contributing to progression of diabetic as well as nondiabetic CKD.7 In a previous mechanistic study comprising individuals with type 1 diabetes, empagliflozin was shown to reduce glomerular hyperfiltration, likely by reducing intraglomerular pressure.8,9 Reductions in intraglomerular pressure, as shown by agents blocking the renin-angiotensin system, are frequently accompanied by a hemodynamic acute decrease in GFR, which is reversible after treatment cessation. Previous studies in patients with type 2 diabetes at various stages of CKD have shown that empagliflozin decreased eGFR by approximately 2–4 ml/min per 1.73 m² during the first weeks of treatment followed by a return to baseline values after treatment cessation.10,11

The EMPA-REG OUTCOME Trial yields a large, well characterized, and prospectively followed cohort. This provides an opportunity to more precisely understand the clinical effects of empagliflozin in patients with concomitant CKD12 as well as delineate differences in the rate of change in kidney function over time (i.e., eGFR slope) during the acute (treatment initiation), chronic maintenance, and post-treatment (follow-up) phases with empagliflozin in a range of patients with type 2 diabetes, and a previous report has provided the first results.5 In this manuscript, we provide additional in-depth assessments of the prespecified analysis of eGFR slopes from the EMPA-REG OUTCOME Trial. We aimed to specifically investigate the consistency and clinical relevance of the effect of empagliflozin on acute changes in eGFR after treatment initiation, eGFR slopes during chronic maintenance treatment, and eGFR changes after study drug discontinuation. These analyses were performed in the overall trial population and then, within specific subgroups of individuals at higher risk of progressive CKD.

METHODS

Design of the EMPA-REG OUTCOME Trial

As described in detail previously,4,13 the EMPA-REG OUTCOME Trial (Clinical Trials.gov identifier: NCT01131676) was a double-blind, placebo-controlled, multinational trial in which adults with type 2 diabetes, glycated hemoglobin A1c (HbA1c) ≥7%, and established cardiovascular disease were randomized in a 1:1:1 ratio to empagliflozin 10 mg, empagliflozin 25 mg, or placebo, all added to background standard of care. Background glucose-lowering therapy was to remain unchanged for the first 12 weeks, after which investigators were encouraged to adjust glucose-lowering therapy to achieve glycemic control according to local guidelines. Moreover, investigators were encouraged to treat other cardiovascular risk factors to the standard of care according to local guidelines.

Patients were required to have an eGFR of ≥30 ml/min per 1.73 m² (on the basis of the Modification of Diet in Renal Disease study [MDRD] formula) at screening. Patients attended the clinic at the following prespecified study visits: screening; baseline; weeks 4, 12, 16, 28, 40, and 52; every 14 weeks until treatment stopped (due to either end of study or discontinuation of study drug); and a final visit approximately 30 days after treatment cessation.13 Serum creatinine and urinary albumin-to-creatinine ratio (UACR) were measured by a central laboratory using standardized procedures.14 Serum creatinine was used to calculate eGFR using the MDRD equation. The primary outcome of the trial was defined as a composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke, and results have been reported previously.4

Analyses

A mixed model for repeated measurements, which includes time points of the prescheduled measurements as fixed effects, was fitted to provide a descriptive presentation of the adjusted mean eGFR over time for empagliflozin and placebo groups. The model included “baseline HbA1c” and “baseline eGFR” as linear covariates and “geographic region,” “baseline body mass index,” “the last week that a patient could have had an eGFR measurement,” “treatment,” “visit,” “interaction between visit and treatment,” “interaction between the baseline HbA1c and visit,” and “interaction between the baseline eGFR and visit” as fixed effects. An unstructured covariance matrix was used to account for serial correlation.

For the slope analysis reported here, the main prespecified efficacy outcome was the average rate of change of eGFR per year during the trial period when patients received stable treatment with study drug (week 4 until treatment cessation; i.e., the chronic maintenance treatment period), and results are expressed as annual changes in eGFR. In addition, the average rate of change in eGFR per week in the first 4 weeks after starting treatment was assessed (i.e., treatment initiation period) as well as that in the 30 days after stopping treatment

Significance Statement

Empagliflozin, a selective sodium glucose cotransporter 2 inhibitor, is indicated to improve glycemic control and reduce the risk of cardiovascular death in patients with type 2 diabetes and established cardiovascular disease. Hypothesis-generating results from the EMPA-REG OUTCOME Trial suggest that empagliflozin slows the progression of CKD. This manuscript presents the prespecified eGFR slope analysis from the trial, in which we evaluated changes in kidney function over time. Our results support a hemodynamic effect of empagliflozin, which may lead to reductions in intraglomerular pressure. During chronic maintenance treatment, this glomerular response to empagliflozin may translate into long-term preservation of kidney function. Our data add to the evidence of the utility of slope analysis as an emerging end point of CKD progression in clinical research.
(i.e., post-treatment cessation period). Changes in eGFR per week or year, further referred to as eGFR slope, were obtained using random coefficient models. Assessment of eGFR slope in the overall population was a prespecified analysis of the trial; post hoc analyses were also conducted in relevant subgroups at higher risk for CKD progression defined by baseline eGFR, UACR, race, BP, age, and HbA1c levels. For the overall population, the models included the following factors: "treatment," "baseline body mass index," and "geographic region" as fixed classification effects and "baseline HbA1c," "time," and "interaction of treatment by time" as linear covariates. Intercepts and slopes over time were allowed to vary randomly between patients by including the patient and time as random effects. Histogram plots of fitted individual eGFR slopes were provided for each period by treatment. For the subgroup analysis, the models additionally included the fixed factor for the subgroup as well as terms for treatment by subgroup interaction and treatment by subgroup by time interaction. Because empagliflozin was previously shown to exert an acute hemodynamic effect, eGFR slopes were separately calculated for three prespecified study periods: treatment initiation effects from baseline to week 4, chronic maintenance treatment effects from week 4 to last value on treatment, and post-treatment effects from last value on treatment to follow-up (planned to be approximately 30 days after cessation of treatment). For the first two time periods, only on-treatment data before stopping the blinded study drug was used, because it was expected that eGFR would increase after empagliflozin treatment was stopped. For the chronic maintenance treatment period, a uniform treatment effect was defined by a consistent shift of the distribution of individual eGFR slopes for empagliflozin compared with the distribution of individual eGFR slopes for placebo. Thus, consistent changes across the population would be denoted by equally symmetric curves, such that the individual changes in eGFR are consistent in not only their directionality but also, their size. For the chronic maintenance treatment period, SDs of the empagliflozin and placebo arms were derived, and homogeneity was tested by the Levene test. These SDs reflect a combination of the variation in the true slopes and the variation in the estimated slopes relative to the true slopes. An additional sensitivity analysis for the chronic maintenance treatment period applied the random-intercept/random-coefficient model using log-transformed eGFR data. Significance was determined on the basis of an \(\alpha \)-level of 0.05 without correction for multiple testing. Additional details of the eGFR slopes analyses are in Supplemental Material.

Data Sharing
The sponsor of the EMPA-REG OUTCOME Trial (Boehringer Ingelheim) is committed to responsible sharing of clinical study reports, related clinical documents, and patient-level clinical study data. Researchers are invited to submit inquiries via the Clinical Study Data Request website (https://www.clinicalstudydatarequest.com).

RESULTS

Patient Disposition
A total of 7020 patients were randomized between September 2010 and April 2013 and received at least one dose of study drug (placebo: \(n=2333 \); empagliflozin 10 mg: \(n=2345 \); empagliflozin 25 mg: \(n=2342 \)) at 590 sites in 42 countries. The median duration of treatment was 2.6 years, and the median observation time was 3.1 years. Overall, 97.0% of patients completed the study, and final vital status was available for 99.2%; 683, 555, and 542 patients treated with placebo, empagliflozin 10 mg, or empagliflozin 25 mg, respectively, prematurely discontinued trial medication (i.e., 25.4% of the total trial population), and reasons for premature discontinuation of study drug have been reported.4

Baseline Characteristics
At baseline, clinical characteristics and concomitant medications were similar between the placebo and empagliflozin groups as reported previously.4 Baseline eGFR measurements were available for the majority of patients (missing only for two patients in the empagliflozin 25 mg group). More than one quarter (\(n=1819; \) 25.9%) of the patients had eGFR\(<60 \text{ ml/min per 1.73 m}^2 \) at baseline (1249 [17.8%] with eGFR\(=45–59 \text{ ml/min per 1.73 m}^2 \) [CKD stage 3A]; 543 [7.7%] with eGFR\(=30–44 \text{ ml/min per 1.73 m}^2 \) [CKD stage 3B]), and 40.0% (\(n=2782 \)) had prevalent albuminuria (microalbuminuria [UACR=30–300 mg/g]: 2013 [28.9%]; macroalbuminuria [UACR>300 mg/g]: 769 [11.0%]). Nearly one third (\(n=2250; \) 32.1%) had prevalent kidney disease defined as eGFR<60 ml/min per 1.73 m² and/or macroalbuminuria. Overall, 95% of patients were taking antihypertensive therapies at baseline, most commonly ACE inhibitors or ARBs (80.7%), \(\beta \)-blockers (64.9%), and diuretics (43.2%).

Empagliflozin Is Associated with Consistent Shifts in Individual eGFR Slopes
Adjusted mean eGFR values over time for the pooled empagliflozin and placebo groups are shown in Figure 1 on the basis of a mixed model for repeated measurements. In the next step, we calculated the estimated individual patient slopes on the basis of prespecified random coefficient models to assess the distribution of individual eGFR slopes. As shown in Figure 2, the effect of empagliflozin was considered to show a consistent shift across the distribution of individual eGFR changes compared with the rate of individual eGFR changes in the placebo group, and this finding was evident during all three prespecified periods. Hence, compared with placebo treatment, the distribution of individual eGFR slopes in the pooled empagliflozin group shifted leftward during treatment initiation (baseline to week 4), indicating a reduction in mean eGFR, but thereafter, it shifted rightward during both chronic maintenance treatment (week 4 to last value on treatment) and follow-up (last value on treatment to follow-up), indicating a period of slower loss of kidney function followed...
by an increase in mean eGFR, respectively. The changes in mean eGFR during the chronic maintenance treatment period (i.e., the most clinically relevant period) are considered uniform, because the SDs in the placebo and empaglifl ozin arms were similar (1.51 versus 1.65 ml/min per 1.73 m², respectively; ratio, 0.9169). Testing for homogeneity by the Levene test did not reveal evidence that the SDs of the two treatment arms were significantly different (P=0.06). Results from the sensitivity analysis using log eGFR provided similar results (SDs in placebo and empaglifl ozin arms: 0.029 versus 0.029 ml/min per 1.73 m², respecti vely; ratio, 1.0266; Levene test P=0.71). In an additional sensitivity analysis, the distribution of individual eGFR slopes with the two doses of empaglifl ozin (10 and 25 mg) was considered to also reflect a consistent shift across all three prespecified study periods, confirming the overall consistency of the individual doses with the pooled analyses (Supplemental Figure 1).

Empagliflozin Slows the Annual Decline in eGFR Assessed by Mean eGFR Slopes

Adjusted mean eGFR slopes over the three prespecified study periods are shown in Figure 3A. During the treatment initiation phase, the weekly mean adjusted eGFR significantly declined in the empaglifl ozin group compared with the placebo group (Figure 3B). Thereafter, the annual adjusted change in mean eGFR during the chronic maintenance treatment period was not further reduced in the empaglifl ozin group (+0.23 ml/min per year per 1.73 m²; 95% confidence interval, 0.05 to 0.40) and declined in the placebo group (−1.46 ml/min per year per 1.73 m²; 95% confidence interval, −1.74 to −1.17; P<0.001 for empaglifl ozin versus placebo) (Figure 3B). The study included a post-treatment follow-up period, with eGFR measurements performed at approximately 30 days after the end of study drug intake. During this phase, the weekly adjusted mean eGFR change significantly increased in the empaglifl ozin group and overall returned toward mean baseline eGFR levels, with little change seen in the placebo group (Figure 3B). Notably, mean eGFR slope results with empaglifl ozin 10 mg and empaglifl ozin 25 mg were overall consistent with the pooled analyses across all three study periods (Supplemental Figure 2).

Mean eGFR Slopes in Subgroups of Patients at Higher Risk for Progressive CKD

In patients with prevalent CKD at baseline, mean slopes depicting weekly/annual changes in eGFR during the treatment initiation period, the chronic maintenance treatment period, and the postdrug cessation period for empaglifl ozin (pooled) and placebo are shown in Figure 4A. Differences in mean adjusted annual eGFR slope rates during chronic therapy were in favor of empaglifl ozin compared with placebo, with no significant difference between patients with or without prevalent CKD at baseline (Figure 5), and these results were overall consistent with the effects observed in the overall study.
population. Detailed mean eGFR slope results for prevalent CKD subgroups across all three prespecified study periods are depicted in Supplemental Figure 3A. In addition, differences in weekly mean eGFR slope rates for empagliflozin versus placebo were consistent in patients with and without prevalent CKD during both the initiation and cessation time periods (Supplemental Figure 4).

A similar pattern of adjusted mean eGFR weekly/annual slopes during the initiation, chronic maintenance treatment, and cessation periods for empagliflozin and placebo was seen in further analyses for subgroups on the basis of baseline UACR (Figure 4B), race (Figure 4C), BP (Figure 4D), age (Figure 4E), and baseline HbA1c (Figure 4F). As with the overall patient population, adjusted mean annual eGFR slope rates during chronic therapy were stable with empagliflozin compared with a decline in placebo in most of the subgroups, and they were smaller with empagliflozin compared with placebo in all subgroups (Figure 5). Notably, we identified potential heterogeneity in the treatment effect of empagliflozin during chronic treatment maintenance for two at-risk patient subgroups: the placebo-corrected numerical treatment effect of empagliflozin on slowing annual decline in eGFR seemed to be larger in patients with macroalbuminuria or increased BP levels compared with patients with lower levels of albuminuria or BP at baseline (P values for interaction <0.001 and <0.02, respectively) (Figure 5). Further detailed mean eGFR slopes...
DISCUSSION

This study supports the hypothesis that empagliflozin treatment results in consistent shifts in individual patient eGFR slopes during the three prespecified study periods: a leftward shift (i.e., eGFR decline relative to placebo) shortly after initiation (indicative of an acute hemodynamic response), a rightward shift (i.e., slowing of eGFR loss relative to placebo) during chronic maintenance treatment (indicative of preserving kidney function), and a rightward shift (i.e., increase in eGFR relative to placebo) shortly after drug cessation (indicative of a reversal of the renal hemodynamic effect—even after long-term drug intake). This dynamic eGFR slope pattern was also consistent across patients with an array of eGFRs in the trial and specifically across subgroups of patients at higher risk of CKD progression. Interestingly, we found an indication for a more pronounced effect of empagliflozin to slow kidney function decline in patients with prevalent macroalbuminuria or increased BP. Individuals with these clinical conditions are known to be at increased risk for rapid decline in kidney function, and our hypothesis-generating findings merit future clinical research. Further assessment of eGFR slope in patients with type 2 diabetes, albeit during shorter-term treatment and lacking a postdrug follow-up period, has previously been reported for another SGLT2 inhibitor, canagliflozin.16

Historically, doubling of serum creatinine level, which roughly equates to a 57% reduction in eGFR, has been used as an end point in clinical studies of kidney disease.15,17,18 Use of this measure, however, necessitates lengthy follow-up and/or very large numbers of patients in clinical trials, because doubling of serum creatinine is a late manifestation of CKD progression. Consequently, much effort is being devoted to exploring novel alternative measures of kidney disease progression for use as a more effective metric of CKD progression. This initiative also aims to reduce complexity and logistical
burden for investigators and patients in clinical research as well as enable the study of individuals with earlier-stage CKD. One such potential alternative end point under discussion is the rate of change in kidney function over time (i.e., eGFR slope).15,19

We propose that eGFR slopes may be considered as a surrogate end point for future clinical research in CKD/diabetic kidney disease under certain conditions where relevant prerequisites are fulfilled. First, a population in need of additional kidney-protective therapy (e.g., individuals with a clinically meaningful decline in annual eGFR slope) has to be defined. Second, a clinically relevant treatment effect of the specific intervention (e.g., a minimal expected slowing in annual GFR decline) should be prespecified. Third, the minimum duration of a chronic maintenance treatment effect should be ensured. For example, in the EMPA-REG OUTCOME Trial, such criteria apply to the subgroups of patients with prevalent CKD: a clinically relevant treatment effect with empagliflozin (compared with a clinically relevant annual decline in kidney function in the placebo group) accompanied by an appropriate duration for which the drug effect was maintained. Additional investigations are needed to clarify clinically relevant effect sizes and the minimal duration of chronic treatment effects for a range of drugs and conditions (including interventions with acute hemodynamic effects). Such investigations will help to standardize eGFR slope analysis in future clinical trials.

Our prespecified slope analysis of the EMPA-REG OUTCOME Trial shows that empagliflozin treatment was associated with a consistent shift in individual eGFR slopes (independent of the underlying rate of GFR change) during the three study periods, in particular showing evidence for homogeneity during the chronic maintenance treatment period (the most clinically relevant period). The latter phenomenon is referred to as a uniform treatment effect.15,20 The alternative, where the effect of an intervention is stronger for faster-progressing patients than for slower-progressing patients, has been termed the proportional treatment effect model.15,20 In this latter scenario, the treatment effect is proportional to the underlying rate of eGFR decline that would have been observed if no intervention was applied. If a proportional effect is present, using mean eGFR slope may be less advantageous compared with a dichotomous outcome (e.g., a time to event analysis), because the treatment effect may be diluted by the inclusion of patients with less progressive disease. We consider that the consistent shifts in individual eGFR slope during the chronic maintenance treatment period observed in the

\textbf{Figure 4.} Continued.
EMPA-REG OUTCOME Trial are in line with the uniform treatment effects model, which supports the use of annual mean eGFR slope as a surrogate end point in future clinical trials with SGLT2 inhibitors.

Our results presented here have strengths and limitations. Analyses were prespecified and are considered of high internal validity, because eGFR slopes were assessed on the basis of recurrent standardized testing. This allowed for annual eGFR slope assessments on the basis of repeated measurements during the chronic maintenance treatment period; however, changes during the initiation and postdrug cessation periods were limited by two consecutive eGFR measurements and therefore, cannot definitively quantify the slope during these two phases. Our results are indicative of treatment effects of empagliflozin during active intake of study drug, because eGFR measurements after premature discontinuation of study drug were censored. This approach envisages determining the biologic effect of the drug; however, this methodology can also lead to potential selection bias of patients during the three prespecified study periods, and extrapolation of findings to the entire trial population has limitations. Moreover, direct comparisons between eGFR changes during the initiation and post-treatment periods should also be interpreted with caution. Nevertheless, the sample size of the overall population enabled the identification of meaningful numbers of patients at higher risk of progressive CKD, providing further confidence in the kidney effects of empagliflozin. Conversely, the EMPA-REG OUTCOME Trial was primarily designed as a cardiovascular trial, and eGFR<30 ml/min per 1.73 m² at screening was grounds for exclusion. Therefore, a limited number of definitive kidney outcomes were available to validate changes in eGFR slope against traditional kidney outcomes, such as doubling of serum creatinine and RRT. Hence, future studies are needed to explore the effect of empagliflozin and other SGLT2 inhibitors on kidney function decline in individuals at more advanced stages of CKD, including those without diabetes. A large kidney outcomes study of empagliflozin including patients with and without diabetes (the EMPA-KIDNEY Study) will start in 2018. Additional insights into the kidney effects of other SGLT2 inhibitors, including eGFR slope analyses, are expected to emerge from the Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation Trial,21 the Dapagliflozin Effect on Cardiovascular and Thrombolysis in Myocardial Infarction Trial,22 and the DAPA-CKD Trial (ClinicalTrials.gov: NCT03036150) involving canagliflozin or dapagliflozin.

Figure 4. Continued.
Our comprehensive slope analysis shows that empagliflozin has the potential to significantly slow eGFR decline over a treatment period of approximately 3 years, including in patients at higher risk for progressive kidney disease. Moreover, empagliflozin slope patterns are indicative of a renal hemodynamic effect reminiscent of observations with ACE inhibitors or ARBs: an initial transient decline in eGFR followed by long-term slowing of kidney function loss. After cessation of empagliflozin, eGFR slopes showed a swift upward trajectory toward baseline, suggestive of an immediate reversibility of the renal hemodynamic effect. Further studies may facilitate specific statistical models to assess the utility of slopes as an attractive surrogate end point of kidney disease progression in clinical research.

Figure 5. Annual changes in eGFR slope favored empagliflozin over placebo in the overall population and in subgroups. Differences in mean eGFR slopes (Modification of Diet in Renal Disease; milliliters per minute per 1.73 m²) between empagliflozin and placebo during chronic treatment (week 4 to last value on treatment) in the treated set of the overall study population and patient subgroups. Measurements obtained during study drug intake were used. Differences depicted for individual data points between empagliflozin and placebo groups represent differences in the annual change in kidney function. Data were from a random-intercept/random-coefficient model. 95% CI, 95% confidence interval; HbA1c, glycated hemoglobin A1c. *Prevalent CKD was defined as eGFR < 60 ml/min per 1.73 m² and/or macroalbuminuria (urinary albumin-to-creatinine ratio [UACR] > 300 mg/g). †Normo indicates normoalbuminuria (UACR < 30 mg/g), micro indicates microalbuminuria (UACR = 30–300 mg/g), macro indicates macroalbuminuria (UACR > 300 mg/g).

ACKNOWLEDGMENTS

Editorial assistance with compilation of the methods and results sections and preparing figures, supported financially by Boehringer Ingelheim, was provided by Giles Brooke and Geraldine Thompson of Envision Scientific Solutions during the preparation of this manuscript.

Data from this study were previously presented at the American Society of Nephrology Kidney Week November 15–20, 2016 in Chicago, Illinois and the American Diabetes Association 77th Scientific Sessions June 9–13, 2017 in San Diego, California.

The EMPA-REG OUTCOME Investigators are as follows: Argentina: D. Aizenberg, Centro Médico Viamonte, Capital Federal, BS AS; M. Ulla, ILAIMCEOM, Córdoba, CBA; J. Waitman, Centro Diabetologico Dr Waitman, Córdoba, CBA; L. De Loredo, Hospital Privado - Centro Médico de Córdoba S.A., Parque Vélez Sarfield, CBA; J. Farias, H. Fideleff, Sanatorio Güemes, Capital Federal, BS AS; M. Lagrutta, Instituto de Investigaciones Clinicas, Rosario, STA FE; N. Maldonado, Centro Medico de Alta Complejidad, Rosario, STA FE; H. Colombo, Clinica Privada Colombo, Cordoba, CO; F. Ferre Pacora, Centro Médico Colon, Cordoba, CO; A. Wasserman, Fepreva, Buenos Aires, BA; L. Maffei, Consultorios Asociados de Endocrinología e Invest Clínica, Capital Federal, BS AS; Australia: R. Lehman, Adelaide Medical Research, Ashford, SA; J. Selvanayagam,
 gracious recognition of the following investigators for their important contributions to this study:

**Bangalore; V. Mohan, Dr Mohan's Diabetes Specialties, Chennai; J. Gupta, S. R. Kalla Groentenroly & General Hospital, Jaipur; N. Sadhu, Shree Krishna Hospital and Heart Care Centre, Ahmedabad, Ahmedabad; A. Kulkarni, Deendayal Medical Centre, S. Taddei, Dipartimento di Scienze della Nefrologia, Università di Roma, Italy; A. Fucili, Centro per lo Scompenso Cardiaco, Ferrara, Italy; V. Toscano, U.O.C. Endocrinologia, Policlinico di Bari, Bari, Italy; P. Pozzilli, Area Endocrinologia, Roma, Italy; F. Colivicchi, M. Santini, Divisione di Cardiologia, Roma, Italy; E. Moro, A. Semplici, U.O. di Medicina Interna, Venezia, Italy; V. Toscano, U.O.C. Endocrinologia, Roma, Italy; A. Fucili, Centro per lo Scompenso Cardiaco, Ferrara, Italy; Japan: S. Monno, ChibaniSh General Hospital, Matsusho, Chiba; K. Furui, Hanyu General Hospital, Hanyushi, Saitama; S. Higashiu, N. Hiramatu, Kishiwada Tokushukai Hospital, Kishiwada, Osaka; K. Kawamitsu, Okinawa Tokushukai medical corporation, Shimajiri-gun, Okinawa; T. Takenaka, National Hospital Organization Hokkaido Medical Center, Nishi-ku, Sapporo, Hokkaido; H. Takahasi, Iryouhounnaiwakai Minamiakatsuuka clinic, Mitoshi, Ibaraki; F. Hojo, Kobari General Hospital, Nodashi, Chiba; Y. Onishi, The Institute for Adult Diseases, Chuo-ku, Tokyo; K. Izumino, Fujikoshi Hospital, Toyamashi, Toyama; M. Okubo, Gifu Heart Center, Gifushi, Gifu; Y. Wakida, Daishinkai Medical Corporation Okouma Hospital, Kita-ku, Nagoya, Aichi; Y. Kondo, Clinic Horikawa, Kamigyo-ku, Kyotso, Kyoto; K. Hieshima, H. Jinouchi, Jinouchi Diabetes Center, Kumamoto-to-shi, Kumamoto; A. Suzuki, M. Ito, Fujita Health University Hospital, Toyoakeshi, Aichi; Republic of Korea: S. Park, Severance Hospital, Seoul, NA; Y. Kim, Asan Medical Center, Seoul; T. Hong, Pusan National University Hospital, Pusan; H. Park, Kyungpook National University Hospital, Daegu; H. Gwon, Samsung Medical Center, Seoul; H. Kim, Seoul National University Hospital, Seoul; K. Kang, S. Lee, Eulji University Hospital, Daejeon; M. Jeong, Chonnam National University Hospital, Gwangju; K. Seung, The Catholic University of Korea, Seoul; D. Lim, Korea University Anam Hospital, Seoul; S. Rha, Korea University Guro Hospital, Seoul; S. Tahk, Ajou University Hospital, Suwon; J. Yang, National Health Insurance Service Ilsan Hospital, Goyang; J. Yoon, Wonju Severance Christian Hospital, Wonju; M. Shin, Gachon University Gil Medical center, Incheon; D. Kim, Inje University Haeundae Paik Hospital, Busan; J. Jeong, Chungnam National University Hospital, Daejeon; Malaysia: N. Nik Ahmad, Hospital Tengku Ampuan Afzan, Pahang; N. Mustafa, Pasut Perubatan University, Kuala Lumpur; W. Wan Mohamed, Hospital Universiti Sains Malaysia, Kelantan; Y. Fung, Queen Elizabeth Hospital, Kota Kinabalu; R. Abdul Ghani, Universiti Teknologi Malaysia, Kelantan; Y. Fung, Queen Elizabeth Hospital, Kota Kinabalu; R. Abdul Ghani, Universiti Teknologi Malaysia, Kelantan.
DISCLOSURES

C.W. reports honoraria from Boehringer Ingelheim (the manufacturer of empagliflozin), Eli Lilly, Mitsubishi, and MSD. H.J.L.H. has consultancy agreements with the following companies: AbbVie, Astellas, AstraZeneca, Boehringer Ingelheim, Janssen, Fresenius, and Merck; H.J.L.H. has a policy of honoraria going to his employer. B.Z. has received grant support from Boehringer Ingelheim, AstraZeneca, and Novo Nordisk and consulting fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, Novo Nordisk,
and Sanofi Aventis. S.E.I. reports honoraria from Intarcia Therapeutics, Inc.; Daiichi-Sankyo; Lexicon Pharmaceuticals; Janssen; Sanofi; AstraZeneca; Boehringer Ingelheim; and Novo Nordisk. A.K.-W., M.M., S.H., U.C.B., and M.V.E. are employees of Boehringer Ingelheim at the time of the study.

REFERENCES

This article contains supplemental material online at http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2018010103/-/DCSupplemental.

AFFILIATIONS

1Division of Nephrology, Department of Medicine, Würzburg University Clinic, Würzburg, Germany; 2Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; 3Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; 4Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut; 5Boehringer Ingelheim International GmbH, Ingelheim, Germany; 6Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia; 7Boehringer Ingelheim International GmbH, Biberach, Germany; 8Ulm University, Ulm, Germany; 9Folkhälso Institute of Genetics, Folkhälso Research Center, Helsinki, Finland; 10Abdominal Centre Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; and 11Research Programs Unit, Diabetes and Obesuty, University of Helsinki, Helsinki, Finland