CKD: A Call for an Age-Adapted Definition

Due to the number of contributing authors, the affiliations are listed at the end of this article.

ABSTRACT

Current criteria for the diagnosis of CKD in adults include persistent signs of kidney damage, such as increased urine albumin-to-creatinine ratio or a GFR below the threshold of 60 ml/min per 1.73 m². This threshold has important caveats because it does not separate kidney disease from kidney aging, and therefore does not hold for all ages. In an extensive review of the literature, we found that GFR declines with healthy aging without any overt signs of compensation (such as elevated single-nephron GFR) or kidney damage. Older living kidney donors, who are carefully selected based on good health, have a lower predonation GFR compared with younger donors. Furthermore, the results from the large meta-analyses conducted by the CKD Prognosis Consortium and from numerous other studies indicate that the GFR threshold above which the risk of mortality is increased is not consistent across all ages. Among younger persons, mortality is increased at GFR <75 ml/min per 1.73 m², whereas in elderly people it is increased at levels <45 ml/min per 1.73 m². Therefore, we suggest that amending the CKD definition to include age-specific thresholds for GFR. The implications of an updated definition are far reaching. Having fewer healthy elderly individuals diagnosed with CKD could help reduce inappropriate care and its associated adverse effects. Global prevalence estimates for CKD would be substantially reduced. Also, using an age-specific threshold for younger persons might lead to earlier identification of CKD onset for such individuals, at a point when progressive kidney damage may still be preventable.

JASN 30: 1785–1805, 2019. doi: https://doi.org/10.1681/ASN.2019030238

The current criteria used for the definition of CKD in adults are: (1) signs of kidney damage, most often determined by an elevated urine albumin (or protein)-to-creatinine ratio (ACR); or (2) reduced kidney function, indicated by GFR <60 ml/min per 1.73 m². GFR is considered the best determinant of kidney function, and CKD is staged according to six GFR categories (G1, G2, G3a, G3b, G4, and G5) and three categories for urine ACR levels (A1, A2 and A3) (Table 1). There is a broad agreement that abnormal urine ACR should trigger a diagnosis of CKD, but controversy remains regarding the most appropriate diagnostic criteria regarding GFR.

In this article, we will focus on the role of GFR in the definition of CKD. Laboratory thresholds for disease identification are commonly determined in two ways. First, the distribution of the laboratory results in a representative population of healthy persons is obtained and thresholds for defining disease are calculated according to extreme values based on this distribution (typically 95th or 97.5th percentile for “too high” and 2.5th or fifth percentile for “too low”). Second, a threshold associated with an adverse outcome is identified through epidemiologic studies. We will discuss these two strategies (reference distribution and prognosis) in the specific case of using GFR for CKD definition.

CURRENT CKD DEFINITION AND RELATED CAVEATS

The current and widely adopted definition of CKD in adults is based on the 2013 Kidney Disease Improving Global Outcomes (KDIGO) guidelines. Although not entirely undisputed, we do recognize the merit of these guidelines, as they standardized the definition of CKD. Not only is GFR one of the two main criteria for diagnosis of CKD, an isolated GFR <60 ml/min per 1.73 m² (confirmed
with a second value after at least 90 days) suffices for the diagnosis of CKD. In other words, anyone with a GFR < 60 ml/min per 1.73 m² persisting for at least 3 months, by definition, has CKD, even if the urine ACR and structure or kidney morphology (ascertained by imaging or biopsy) are normal (e.g., category G3a GFR/stage A1 level of albuminuria), and irrespective of an individual’s age.

The considerations in favor of a fixed threshold at 60 ml/min per 1.73 m² in the current CKD definition proposed by KDIGO are as follows:

1. Simplicity. Only one number needs to be kept in mind. This argument is understandably relevant for non-nephrologists and patients, but carries the risk of oversimplification of the complexities of kidney pathophysiology.

2. Biology. A GFR < 60 ml/min per 1.73 m² is believed to represent < 50% of the kidney function measured in healthy young adults. The choice of 50% of normal function is, however, arbitrary, and whether GFR in healthy young adults is actually about 120 ml/min per 1.73 m² is debatable. This value was originally based on measured GFR (mGFR) values compiled and published in 1969 by Wesson. More recent studies have shown that median GFR values in healthy young adults are < 120 ml/min per 1.73 m². Indeed, one meta-analysis of mGFR data in 5482 living kidney donors found normal mean GFR values of 106.7 ml/min per 1.73 m² at ages 20–30 years. Such values were also observed in a large cohort of 2007 French living kidney donors < 40 years of age, with a mean mGFR of 107.2 ml/min per 1.73 m².

3. Prognosis. The third argument for a threshold at 60 ml/min per 1.73 m² was based on the association of lower GFR values with increased morbidity and mortality. Many large epidemiologic studies, especially from the CKD Prognosis Consortium, have seemingly supported the choice of the 60 ml/min per 1.73 m² threshold for CKD. We will discuss this argument in depth below.

THE PROGNOSTIC ARGUMENT FOR AN AGE-ADAPTED DEFINITION OF CKD

Absolute risks of mortality are typically higher in older patients simply because of the limited human life span. Regarding relative risk, several studies from the CKD Prognosis Consortium have demonstrated that GFR < 60 ml/min per 1.73 m² was independently associated with adverse outcomes, particularly cardiovascular events and all-cause mortality, thereby confirming findings from the seminal study published by Go et al. in 2004. Of note, most of the Consortium analyses of GFR and risk of adverse events in both high-risk and general populations use as the reference group participants with only a single eGFR available (hence, no confirmation of chronicity) of GFR ≥ 95 ml/min per 1.73 m². However, the Consortium’s 2012 meta-analysis, which was dedicated to age and included more than 2 million individuals from 46 different cohorts (33 from the general population and 13 CKD cohorts), used 80 ml/min per 1.73 m² as the reference group eGFR rather than 95 ml/min per 1.73 m². The associations with mortality and ESKD remained significant when eGFR was < 60 ml/min per 1.73 m² in all age categories, although hazard ratios were much lower in older people. Although the risk of ESKD was increased, the progression to ESKD in elderly patients with an eGFR of 45–59 ml/min per 1.73 m² and no abnormal urine ACR is very rare (< 1% risk in 5 years using the Kidney Failure Risk Equation).

Given the critical importance of the choice of the reference group in such analyses, others have reanalyzed the data from the CKD Prognosis Consortium for mortality using different reference groups based on age (Figure 1). In these analyses, the reference eGFR group in each age category was defined as the one with the lowest mortality risk (in subsets with urine ACR < 10 or 10–29 mg/g). The results revealed that, in the 55–64 years age category (reference eGFR > 100 ml/min per 1.73 m²), the mortality risk began to increase when GFR fell below 60 ml/min per 1.73 m². However, for people older than 65 years (reference eGFR > 75–89 ml/min per 1.73 m²), the risk was trivial until the eGFR had fallen below 45 ml/min per 1.73 m². In the youngest age category of 18–45 years (reference eGFR > 105 ml/min per 1.73 m²), the risk of mortality started to increase when eGFR was < 75 ml/min per 1.73 m². Therefore, an age-specific analysis of the data used by the CKD Prognosis Consortium provides a strong argument for an age-adapted definition of CKD using appropriate prognostic strata for age.

Tables 2 and 3 summarize the studies on associations between eGFR and risk of adverse events outside of the CKD Prognosis Consortium. The analysis considered only published full-length articles. We included studies that used creatinine-based equations (Modification of Diet in Renal Disease study or CKD Epidemiology Collaboration [CKD-EPI] equations) and reported adjusted risks of cardiovascular or all-cause mortality. We excluded studies that had only participants with eGFR categories G3–G5 and those without older individuals. Instead, we focused on studies that were performed in elderly individuals or reported results in separate age categories. Our main hypothesis was that the increased risk of mortality associated with lower eGFR differs across age categories and, notably, that an eGFR of 45–60 ml/min
per 1.73 m² in older age groups is not associated with excess mortality.

When looking at studies that presented a separate eGFR category of 45–60 ml/min per 1.73 m² and used eGFR >60 ml/min per 1.73 m² as a reference category, only a few studies demonstrated an increased risk, whereas others did not. The largest study to date included a separate analysis of individuals with an eGFR of 50–60 ml/min per 1.73 m² in the older age categories. The results showed that, in this eGFR category, the risk of death was not higher than in the category eGFR >60 ml/min per 1.73 m². A total of 1741 participants, most with confirmed CKD, were prospectively followed for 5 years. The mean age of the cohort was 72.9±9 years, the mean eGFR using the CKD-EPI equation was 54±12 ml/min per 1.73 m², and most participants had normal urine ACR. After 5 years, 34.1% of the cohort was considered to be stable and 19.3% had even improved their GFR category. Nearly all of the participants who improved their CKD status had been classified as category G3a/A1 at baseline. Interestingly, the age- and sex-standardized mortality rates of those with category G3a GFR were similar to those in the general population, whereas those with category G3b or G4 at baseline had higher mortality rates.

Regarding the prognosis argument, we acknowledge that our proposal of an age-adapted definition for CKD is mainly based on mortality risk. We did not consider other outcomes, even though other publications have reported the risk of lower GFR with classic metabolic complications of CKD (anemia, hyperparathyroidism, acidosis, hyperphosphoremia) and other clinical complications (such as frailty, impaired quality of life, and fracture). These studies, unfortunately, are of little utility in informing our proposal of an age-adapted threshold. Although higher risk of these complications is frequently observed when eGFR is <45 ml/min per 1.73 m², results are much more variable at higher eGFRs (unlike mortality, the

Figure 1. The association between eGFR and all-cause mortality depends on the age group. Hazard ratio for mortality when the reference group is the one with the lowest risk. eGFR ranges are within the brackets (low risk) and are not significantly different from the reference group (from Denic et al.24).
<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Study Name</th>
<th>Country</th>
<th>Time Period of Data Collection</th>
<th>Number of Subjects (N)</th>
<th>Age in years (mean±SD/median and IQR) and Other Potentially Relevant Characteristics</th>
<th>Follow-Up Time (years)</th>
<th>Clinical Cohort/General Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manjunath et al.</td>
<td>Cardiovascular Health Study</td>
<td>United States</td>
<td>1989–1990</td>
<td>4893</td>
<td>73.4 (mean)</td>
<td>5.05 (maximum)</td>
<td>GP</td>
</tr>
<tr>
<td>Go et al.</td>
<td>Kaiser Permanente Renal Registry</td>
<td>United States</td>
<td>1996–2000</td>
<td>1,120,295</td>
<td>52.2±16.3 (mean±SD)</td>
<td>2.84 (median)</td>
<td>GP (health insurer)</td>
</tr>
<tr>
<td>O’Hare et al.</td>
<td>Department of Veterans Affairs</td>
<td>United States</td>
<td>2001–2002</td>
<td>2,583,911</td>
<td>63.6±14 (mean±SD)</td>
<td>3.17±0.62 (mean±SD)</td>
<td>GP (health care provider)</td>
</tr>
<tr>
<td>Maaravi et al.</td>
<td>Jerusalem Seventy-Year-Old Longitudinal Study</td>
<td>Israel</td>
<td>1990–1991</td>
<td>441</td>
<td>70 (all)</td>
<td>12 (maximum)</td>
<td>GP</td>
</tr>
<tr>
<td>Hallan et al.</td>
<td>HUNT II</td>
<td>Norway</td>
<td>1995–1997</td>
<td>9709</td>
<td>All with DM or treated HT plus 5% random sample. DM/HT age 65.9±11.9 (mean±SD); random non-DM/HT age 49.6±16.0 (mean±SD)</td>
<td>8.3 (median)</td>
<td>GP (health survey); population based, but in fact a “high-risk” study population</td>
</tr>
<tr>
<td>Raymond et al.</td>
<td>NA</td>
<td>United Kingdom</td>
<td>2000–2003</td>
<td>106,366</td>
<td>57.7±19.1 (mean±SD)</td>
<td>3 (maximum)</td>
<td>GP</td>
</tr>
<tr>
<td>Brantsma et al.</td>
<td>PREVEND</td>
<td>Netherlands</td>
<td>1997–1998</td>
<td>8495</td>
<td>49.2±12.7 (mean±SD)</td>
<td>7.5 (median)</td>
<td>GP (oversampling of individuals with elevated ACR levels)</td>
</tr>
<tr>
<td>Hwang et al.</td>
<td>Elderly Health Examination Program</td>
<td>Taiwan</td>
<td>2002–2004</td>
<td>35,529</td>
<td>75.7±5.3 (mean±SD)</td>
<td>From 2.6±0.3 (mean±SD) for eGFR ≥60 ml/min to 2.3±0.7 (mean±SD) for stage 5</td>
<td>GP</td>
</tr>
<tr>
<td>Roderick et al.</td>
<td>MRC General Practice Research Framework</td>
<td>United Kingdom</td>
<td>1994–1999</td>
<td>13,177</td>
<td>80.2 (median)</td>
<td>7.3 (median)</td>
<td>GP (primary care)</td>
</tr>
<tr>
<td>Van der Velde et al.</td>
<td>PREVEND</td>
<td>Netherlands</td>
<td>1997–1998</td>
<td>8047</td>
<td>49±13 (mean±SD)</td>
<td>7.0±1.6 (mean±SD)</td>
<td>GP (oversampling of individuals with elevated ACR levels)</td>
</tr>
<tr>
<td>Muntner et al.</td>
<td>REGARDS</td>
<td>United States</td>
<td>2003–2007</td>
<td>24,350</td>
<td>≥45</td>
<td>4.5 (median)</td>
<td>GP (oversampling of black people)</td>
</tr>
<tr>
<td>Stengel et al.</td>
<td>Three-City BELFRAIL</td>
<td>France</td>
<td>1999–2001</td>
<td>8705</td>
<td>74.3±5.5 (mean±SD)</td>
<td>6 (maximum)</td>
<td>GP</td>
</tr>
<tr>
<td>Van Pottelbergh et al.</td>
<td>KloSHA</td>
<td>Belgium</td>
<td>2008–2009</td>
<td>539</td>
<td>84.7±3.6 (mean±SD)</td>
<td>2.9±0.3</td>
<td>GP (primary care)</td>
</tr>
<tr>
<td>Oh et al.</td>
<td>KloSHA</td>
<td>Korea</td>
<td>2005–2006</td>
<td>949</td>
<td>75.8±9.0 (mean±SD)</td>
<td>5.3±1.4 (mean±SD)</td>
<td>GP</td>
</tr>
</tbody>
</table>
Table 2. Continued

<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Study Name</th>
<th>Country</th>
<th>Time Period of Data Collection</th>
<th>Number of Subjects (N)</th>
<th>Age in years (mean±SD/median and IQR) and Other Potentially Relevant Characteristics</th>
<th>Follow-Up Time (years)</th>
<th>Clinical Cohort/General Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutolo et al.⁴⁷</td>
<td>Health Search/ Cegedim Strategic Data Longitudinal Patient Database</td>
<td>Italy</td>
<td>2003–2005</td>
<td>30,326</td>
<td>71.0±11.0 (mean±SD)</td>
<td>7.2 (median)</td>
<td>4.7–7.7 (IQR)</td>
</tr>
<tr>
<td>Malmgren et al.⁴⁸</td>
<td>OPRA</td>
<td>Sweden</td>
<td>NA</td>
<td>1011</td>
<td>75.2±0.2 (mean±SD)</td>
<td>10 (all)</td>
<td>GP</td>
</tr>
<tr>
<td>Chowdhury et al.⁴⁹</td>
<td>ANBP2</td>
<td>Australia</td>
<td>NA</td>
<td>6083</td>
<td>71.9±4.9 (mean±SD)</td>
<td>10.8 (median)</td>
<td>9.6–11.4 (IQR)</td>
</tr>
<tr>
<td>Nagai et al.⁵⁰</td>
<td>Ibaraki Prefecture</td>
<td>Japan</td>
<td>1993</td>
<td>89,547</td>
<td>Men 60.2 (mean)</td>
<td>17.1 (mean)</td>
<td>GP (exclusion of those with history of CVD)</td>
</tr>
<tr>
<td>Corsonello et al.⁵¹</td>
<td>InChianti</td>
<td>Italy</td>
<td>1998–2000</td>
<td>828</td>
<td>74.4±6.9 (mean±SD)</td>
<td>9 (maximum)</td>
<td>GP</td>
</tr>
<tr>
<td>Wu et al.⁵²</td>
<td>Kailuan Study</td>
<td>China</td>
<td>2006–2007</td>
<td>95,391</td>
<td>52.0±12.6 (mean±SD)</td>
<td>8 (maximum)</td>
<td>GP</td>
</tr>
</tbody>
</table>

GP, general population; IQR, interquartile range; DM, diabetes mellitus; HT, hypertension; NA, not available; HUNT, Nord-Trøndelag Health Study; PREVEND, Prevention of Renal and Vascular Endstage Disease; MRC, Medical Research Council; REGARDS, Reasons for Geographic and Racial Differences in Stroke; KloSHA, Korean Longitudinal Study on Health and Aging; OPRA, Osteoporosis Risk Assessment; ANBP2, Second Australian National Blood Pressure Study; RCT, randomized controlled trial; CVD, cardiovascular disease.
<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Study Name</th>
<th>eGFR/ACR (GFR equation)</th>
<th>Outcome Studied (ACM or CVM)</th>
<th>Comparison Made and Reference Category</th>
<th>Adjusted Hazard Ratios in Exposure Categories</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manjunath et al.25</td>
<td>Cardiovascular Health Study</td>
<td>MDRD ACM</td>
<td>90–130 ml/min per 1.73 m²</td>
<td>60–89 ml/min 1.05 (0.78–1.41) 15–59 ml/min 1.47 (1.05–2.06)</td>
<td>In a subgroup where chronicity was confirmed (repeated serum creatinine measurements) (n=172,144), eGFR at 45–59 ml/min was not associated with ACM.</td>
<td></td>
</tr>
<tr>
<td>Go et al.29</td>
<td>Kaiser Permanente Renal Registry</td>
<td>MDRD ACM</td>
<td>≥60 ml/min per 1.73 m²</td>
<td>45–59 ml/min 1.2 (1.1–1.2) 30–44 ml/min 1.8 (1.7–1.9) 15–29 ml/min 3.2 (3.1–3.4) <15 ml/min 5.9 (5.4–6.3) CV events: 45–59 ml/min 1.4 (1.4–1.5) 30–44 ml/min 2.0 (1.9–2.1) 15–29 ml/min 2.8 (2.6–2.9) <15 ml/min 3.4 (3.1–3.8)</td>
<td>In younger age categories, adjusted HRs were higher and statistically significant already from 50 to 59 ml/min.</td>
<td></td>
</tr>
<tr>
<td>O’Hare et al.36</td>
<td>Department of Veterans Affairs</td>
<td>MDRD ACM</td>
<td>≥60 ml/min per 1.73 m²</td>
<td>18–44 yr: 50–59 ml/min 1.56 (1.30–1.88) 40–49 ml/min 1.90 (1.35–2.67) 30–39 ml/min 3.58 (2.54–5.05) 45–54 yr: 50–59 ml/min 1.27 (1.19–1.36) 40–49 ml/min 1.89 (1.74–2.06) 30–39 ml/min 2.89 (2.63–3.18) 55–64 yr: 50–59 ml/min 1.18 (1.13–1.23) 40–49 ml/min 1.75 (1.65–1.85) 30–39 ml/min 2.43 (2.27–2.59) 65–74 yr: 50–59 ml/min 1.02 (0.99–1.05) 40–49 ml/min 1.35 (1.32–1.39) 30–39 ml/min 1.81 (1.75–1.87) 75–84 yr: 50–59 ml/min 1.02 (0.99–1.04) 40–49 ml/min 1.21 (1.18–1.23) 30–39 ml/min 1.55 (1.51–1.58) 85+ yr: 50–59 ml/min 1.02 (0.97–1.06) 40–49 ml/min 1.10 (1.05–1.15) 30–39 ml/min 1.36 (1.29–1.44)</td>
<td>In younger people and elderly with stable eGFR adjusted HRs were lower in all eGFR categories, 50–59 ml/min was not associated with ACM. Findings suggest that mortality risk stratification in younger and elderly people should not be based on the same eGFR cut-off points.</td>
<td></td>
</tr>
<tr>
<td>Author (reference)</td>
<td>Study Name</td>
<td>eGFR/ACR (GFR equation)</td>
<td>Outcome Studied (ACM or CVM)</td>
<td>Comparison Made and Reference Category</td>
<td>Adjusted Hazard Ratios in Exposure Categories</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Maaravi et al.²⁷</td>
<td>Jerusalem Seventy-Year-Old Longitudinal Study</td>
<td>MDRD CG Mayo Clinic MDRD</td>
<td>ACM</td>
<td>≥60 ml/min per 1.73 m² Results presented for MDRD</td>
<td><60 ml/min 1.19 (0.83–1.71)</td>
<td></td>
</tr>
<tr>
<td>Hallan et al.³⁸</td>
<td>HUNT II</td>
<td>MDRD CVM</td>
<td>ACM</td>
<td>≥75 ml/min per 1.73 m² and optimal ACR; ACR below sex-specific median (<5 and 7 mg/g in men and women)</td>
<td><70 yr: Optimal ACR: 60–74 ml/min 1.17 (0.35–3.91) 45–59 ml/min 0.73 (0.26–2.02) <45 ml/min 1.08 (0.19–6.10) High normal ACR: 60–74 ml/min 1.53 (0.55–4.26) 45–59 ml/min 3.29 (1.02–10.6) <45 ml/min 2.57 (0.88–7.51) Micro-albuminuria: 60–74 ml/min 1.92 (0.71–5.16) 45–59 ml/min 2.22 (0.87–5.70) <45 ml/min 5.94 (2.06–17.2) ≥70 yr: Optimal ACR: 60–74 ml/min 0.79 (0.30–2.10) 45–59 ml/min 2.48 (0.76–8.13) <45 ml/min 1.49 (0.46–4.86) High normal ACR: 60–74 ml/min 1.68 (0.61–4.69) 45–59 ml/min 1.93 (0.63–5.92) <45 ml/min 4.70 (1.57–14.1) Micro-albuminuria: 60–74 ml/min 3.80 (1.33–10.80) 45–59 ml/min 4.09 (1.52–10.90) <45 ml/min 8.38 (2.83–24.9)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Continued

<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Study Name</th>
<th>eGFR/ACR (GFR equation)</th>
<th>Outcome Studied (ACM or CVM)</th>
<th>Comparison Made and Reference Category</th>
<th>Adjusted Hazard Ratios in Exposure Categories</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raymond et al. 56</td>
<td>NA</td>
<td>MDRD ACM</td>
<td>≥60 ml/min per 1.73 m²</td>
<td>20–44 yr: Stage 3a 13.6 (6.2–29.8) Stage 3b 12.1 (4.0–36.5) Stage 4 17.4 (5.9–51.4) Stage 5 26.1 (9.1–74.8)</td>
<td>45–54 yr: Stage 3a 7.5 (4.4–12.6) Stage 3b 13.6 (7.5–24.7) Stage 4 4.6 (1.2–17.4) Stage 5 28.6 (17.4–47.2)</td>
<td>55–64 yr: Stage 3a 3.0 (2.2–4.1) Stage 3b 5.9 (3.9–8.9) Stage 4 9.3 (6.1–14.2) Stage 5 18.2 (13.9–23.9) 65–74 yr: Stage 3a 1.8 (1.5–2.1) Stage 3b 3.2 (2.6–3.9) Stage 4 5.2 (4.1–6.5) Stage 5 7.6 (5.7–10.1) 75–84 yr: Stage 3a 1.2 (1.0–1.3) Stage 3b 1.9 (1.7–2.1) Stage 4 3.3 (2.9–3.8) Stage 5 4.4 (3.7–5.3) 85+ yr: Stage 3a 0.9 (0.8–1.0) Stage 3b 1.3 (1.2–1.5) Stage 4 1.8 (1.7–2.0) Stage 5 2.5 (2.3–2.8) Stage 1 2.2 (1.5–3.3) Stage 2 1.6 (1.3–2.0) Stage 3 1.3 (1.0–1.7) Stage 3 with UAE < 30 mg/24 h 1.0 (0.7–1.4) Stage 3 with UAE > 30 mg/24 h 1.6 (1.1–2.3)</td>
</tr>
<tr>
<td>Brantsma et al. 39</td>
<td>PREVEND</td>
<td>MDRD ACM</td>
<td>ACM: 45–59 ml/min 1.10 (1.0–1.2) 30–44 ml/min 1.52 (1.3–1.8) 15–29 ml/min 2.1 (1.7–2.6) < 15 ml/min 2.55 (1.8–3.6) CVM: 45–59 ml/min 1.30 (1.0–1.7) 30–44 ml/min 2.42 (1.7–3.4) 15–29 ml/min 3.62 (2.3–5.8) < 15 ml/min 3.22 (1.3–8.3)</td>
<td>No CKD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hwang et al. 40</td>
<td>Elderly Health Examination Program</td>
<td>MDRD ACM</td>
<td>≥60 ml/min per 1.73 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REVIEW www.jasn.org
Table 3. Continued

<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Study Name</th>
<th>eGFR/ACR (GFR equation)</th>
<th>Outcome Studied (ACM or CVM)</th>
<th>Comparison Made and Reference Category</th>
<th>Adjusted Hazard Ratios in Exposure Categories</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roderick et al.</td>
<td>MRC General Practice Research Framework</td>
<td>MDRD Dipstick proteinuria</td>
<td>ACM in those without CVD at baseline</td>
<td>≥60 ml/min per 1.73 m²; proteinuria negative</td>
<td>ACM after 0–2 yr:</td>
<td>Short-term (0–2 yr) eGFR-related risk is higher than long term (>2 yr) risk (not shown)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Men: 45–59 ml/min 1.13 (0.93–1.37)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–44 ml/min 1.69 (1.26–2.28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><30 ml/min 3.87 (2.78–5.38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women: 45–59 ml/min 1.14 (0.93–1.40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–44 ml/min 1.33 (1.06–1.68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><30 ml/min 2.44 (1.68–3.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CVM after 0–2 yr:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Men: 45–59 ml/min 1.67 (1.15–2.43)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–44 ml/min 1.60 (0.94–2.73)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><30 ml/min 2.89 (1.22–6.84)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women: 45–59 ml/min 1.59 (1.01–2.50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–44 ml/min 1.45 (0.93–2.28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><30 ml/min 3.80 (1.87–7.75)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACM:</td>
<td></td>
<td>Men: Proteinuria positive:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>60 ml/min 1.29 (1.07–1.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45–59 ml/min 1.25 (1.02–1.52)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–44 ml/min 1.08 (0.82–1.42)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><30 ml/min 0.95 (0.56–1.59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women: Proteinuria positive:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>60 ml/min 1.19 (0.96–1.47)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45–59 ml/min 0.94 (0.77–1.15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–44 ml/min 1.39 (1.10–1.77)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><30 ml/min 1.70 (1.15–2.52)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CVM:</td>
<td></td>
<td>Men: Proteinuria positive:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>60 ml/min 1.05 (0.70–1.57)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45–59 ml/min 1.31 (0.91–1.89)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–44 ml/min 0.83 (0.47–1.46)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><30 ml/min 0.97 (0.35–2.68)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Women: Proteinuria positive:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>60 ml/min 1.18 (0.80–1.74)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45–59 ml/min 0.93 (0.65–1.32)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30–44 ml/min 1.34 (0.88–2.03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><30 ml/min 2.79 (1.40–5.54)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Continued

<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Study Name</th>
<th>eGFR/ACR (GFR equation)</th>
<th>Outcome Studied (ACM or CVM)</th>
<th>Comparison Made and Reference Category</th>
<th>Adjusted Hazard Ratios in Exposure Categories</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van der Velde et al.(^2)</td>
<td>PREVEND</td>
<td>MDRD CKD-EPI SCr CysC</td>
<td>Fatal and nonfatal CV events</td>
<td>+10 ml/min per 1.73 m(^2) increase in eGFR. Results presented for CKD-EPI</td>
<td><60 yr: 0.70 (0.62–0.79) ≥60 yr: 1.02 (0.92–1.13)</td>
<td>The association between eGFR and risk of CV events is weaker in elderly subjects than in younger subjects. If ACR is <10 mg/g, the results are similar: 45–59 yr: 45–60 ml/min 2.5 (1.3–4.6) <45 ml/min 3.5 (1.8–6.8) 60–69 yr: 45–60 ml/min 1.7 (1.3–2.3) <45 ml/min 2.2 (1.6–3.0) 70–79 yr: 45–60 ml/min 1.1 (0.9–1.3) <45 ml/min 1.9 (1.5–2.4) ≥80 yr: 45–60 ml/min 1.3 (1.0–1.7) <45 ml/min 1.5 (1.1–2.0)</td>
</tr>
<tr>
<td>Muntner et al.(^3)</td>
<td>REGARDS</td>
<td>CKD-EPI ACR</td>
<td>ACM</td>
<td>≥60 ml/min per 1.73 m(^2)</td>
<td>45–59 yr: 45–60 ml/min 2.5 (1.3–4.6) <45 ml/min 3.5 (1.8–6.8) 60–69 yr: 45–60 ml/min 1.7 (1.3–2.3) <45 ml/min 2.2 (1.6–3.0) 70–79 yr: 45–60 ml/min 1.1 (0.9–1.3) <45 ml/min 1.9 (1.5–2.4) ≥80 yr: 45–60 ml/min 1.3 (1.0–1.7) <45 ml/min 1.5 (1.1–2.0)</td>
<td></td>
</tr>
<tr>
<td>Stengel et al.(^4)</td>
<td>Three-City</td>
<td>CKD-EPI MDRD</td>
<td>ACM</td>
<td>≥75–89 ml/min per 1.73 m(^2); results presented for CKD-EPI</td>
<td>ACM: 60–74 ml/min 0.9 (0.8–1.1) 45–59 ml/min 1.1 (0.9–1.3) 30–44 ml/min 2.0 (1.5–2.7) <30 ml/min 3.3 (2.0–5.5) CVM: 60–74 ml/min 0.9 (0.6–1.3) 45–59 ml/min 1.6 (1.1–2.3) 30–44 ml/min 3.1 (1.8–5.0) <30 ml/min 4.3 (1.8–10.2)</td>
<td></td>
</tr>
<tr>
<td>Van Pottelbergh et al.(^5)</td>
<td>BELFRAIL</td>
<td>MDRD CKD-EPI SCr CysC</td>
<td>ACM and RRT combined</td>
<td>60–90 ml/min per 1.73 m(^2); results presented for CKD-EPI SCr</td>
<td>45–60 ml/min 1.65 (1.05–2.61) 30–45 ml/min 1.72 (1.03–2.88) <30 ml/min 5.04 (2.95–8.60)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Continued

<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Study Name</th>
<th>eGFR/ACR (GFR equation)</th>
<th>Outcome Studied (ACM or CVM)</th>
<th>Comparison Made and Reference Category</th>
<th>Adjusted Hazard Ratios in Exposure Categories</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oh et al.(^{46})</td>
<td>KLoSHA CKD-EPI</td>
<td>Disptick proteinuria</td>
<td>ACM</td>
<td>≥90 ml/min per 1.73 m(^2); proteinuria negative</td>
<td>60–89 ml/min 1.37 (0.75–2.52)</td>
<td>45–59 ml/min 1.65 (0.84–3.25)</td>
</tr>
<tr>
<td>Minutolo et al.(^{47})</td>
<td>Health Search/ Cegedim Strategic Data Longitudinal Patient Database</td>
<td>MDRD</td>
<td>ACM</td>
<td>≥60 ml/min per 1.73 m(^2)</td>
<td>Stage 3a 1.11 (0.99–1.23)</td>
<td>Stage 3b 1.66 (1.49–1.86)</td>
</tr>
<tr>
<td>Malmgren et al.(^{48})</td>
<td>OPRA CKD-EPI MDRD Revised Lund-Malmö BIS-1 CG</td>
<td>ACM</td>
<td>≥60 ml/min per 1.73 m(^2); results presented for CKD-EPI</td>
<td>75–80 yr: 45–60 ml/min 1.1 (0.6–2.0) 0–45 ml/min 4.5 (2.2–9.2)</td>
<td>75–85 yr: 45–60 ml/min 1.4 (1.0–1.9) 0–45 ml/min 3.5 (2.1–5.8)</td>
<td>80–85 yr: 45–60 ml/min 1.7 (1.1–2.6) 0–45 ml/min 2.6 (1.4–5.0)</td>
</tr>
<tr>
<td>Chowdhury et al.(^{49})</td>
<td>ANBP2 MDRD CKD-EPI</td>
<td>ACM CVM</td>
<td>≥60 ml/min per 1.73 m(^2); results presented for CKD-EPI</td>
<td>ACM: 45–59 ml/min 1.13 (1.01–1.27) 30–44 ml/min 1.65 (1.37–1.99)</td>
<td><30 ml/min 5.16 (3.17–8.42) CVM: 45–59 ml/min 1.05 (0.89–1.23) 30–44 ml/min 1.64 (1.27–2.13)</td>
<td><30 ml/min 5.60 (2.32–13.51)</td>
</tr>
<tr>
<td>Author (reference)</td>
<td>Study Name</td>
<td>eGFR/ACR (GFR equation)</td>
<td>Outcome Studied (ACM or CVM)</td>
<td>Comparison Made and Reference Category</td>
<td>Adjusted Hazard Ratios in Exposure Categories</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Nagai et al.50</td>
<td>Ibaraki Prefecture</td>
<td>MDRD ACM CVM</td>
<td>≥60 ml/min per 1.73 m²</td>
<td>ACM:</td>
<td>40–69 yr: 45–49 ml/min 1.33 (1.06–1.67) 30–44 ml/min 1.53 (1.20–1.96) 70–80 yr: 45–49 ml/min 1.02 (0.82–1.25) 30–44 ml/min 1.63 (1.33–2.00) Women: 40–69 yr: 45–49 ml/min 1.50 (1.27–1.78) 30–44 ml/min 2.21 (1.81–2.71) 70–80 yr: 45–49 ml/min 1.19 (1.02–1.38) 30–44 ml/min 1.53 (1.31–1.79) CVM: Men: 40–69 yr: 45–49 ml/min 1.82 (1.23–2.69) 30–44 ml/min 1.65 (1.04–2.62) 70–80 yr: 45–49 ml/min 1.03 (0.72–1.48) 30–44 ml/min 1.37 (0.93–2.02) Women: 40–69 yr: 45–49 ml/min 1.34 (0.98–1.82) 30–44 ml/min 2.24 (1.58–3.17) 70–80 yr: 45–49 ml/min 1.43 (1.14–1.79) 30–44 ml/min 1.57 (1.23–2.00)</td>
<td></td>
</tr>
<tr>
<td>Corsonello et al.51</td>
<td>InChianti</td>
<td>CKD-EPI SCr BIS-1 SCr FAS CKD-EPI SCr-CysC BIS-2 SCr-CysC ACM</td>
<td>≥90 ml/min per 1.73 m²; results presented for CKD-EPI SCr</td>
<td>60–89.9 ml/min 1.63 (0.84–3.17) 45–59.9 ml/min 2.50 (1.21–5.15) 30–44.9 ml/min 5.44 (1.10–27.7) <30 ml/min 7.42 (1.79–30.6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Continued

<table>
<thead>
<tr>
<th>Author (reference)</th>
<th>Study Name</th>
<th>eGFR/ACR (GFR equation)</th>
<th>Outcome Studied (ACM or CVM)</th>
<th>Comparison Made and Reference Category</th>
<th>Adjusted Hazard Ratios in Exposure Categories</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu et al.52</td>
<td>Kailuan Study</td>
<td>CKD-EPI Dipstick proteinuria</td>
<td>ACM</td>
<td>≥ 90 ml/min per 1.73 m(^2) All: 60–89 ml/min 1.01 (0.93–1.09) 45–59 ml/min 1.11 (0.99–1.24) <45 ml/min 1.51 (1.30–1.74) Men: 60–89 ml/min 1.01 (0.94–1.10) 45–59 ml/min 1.11 (0.99–1.23) <45 ml/min 1.35 (1.17–1.57) Women: 60–89 ml/min 1.65 (1.16–2.34) 45–59 ml/min 1.92 (1.25–2.96) <45 ml/min 4.11 (2.50–6.76)</td>
<td></td>
<td>ACM, all-cause mortality; CVM, cardiovascular mortality; MDRD, Modified Diet in Renal Disease Study equation; CV, cardiovascular; HR, hazard ratio; CG, Cockcroft and Gault formula; MRC, Medical Research Council; CVD, cardiovascular disease; HUNT, Nord-Trøndelag Health Study; PREVEND, Prevention of Renal and Vascular Endstage Disease; CysC, cystatin C; REGARDS, Reasons for Geographic and Racial Differences in Stroke; KLoSHA, Korean Longitudinal Study on Health and Aging; NA, not available; OPRA, Osteoporosis Risk Assessment; ANBP2, Second Australian National Blood Pressure Study; SCr, serum creatinine; BIS1, Berlin Initiative Study; FAS, full age spectrum.</td>
</tr>
</tbody>
</table>
definitions of specific complications or of clinical status are not uniform).

In summary, most studies showed no or a trivial additional mortality risk for older adult participants with an eGFR of 45–59 ml/min per 1.73 m² and normal urine ACR. Prognostic arguments thus favor an age-adapted threshold for eGFR in the CKD definition.

KIDNEY SENECE AS AN ARGUMENT FOR AN AGE-ADAPTED DEFINITION OF CKD

Another concern with a GFR threshold fixed at 60 ml/min per 1.73 m² is that it fails to account for the distinct microstructural and macrostructural differences between the aging kidney and kidneys affected by CKD. It also does not take into account the fact that a substantial proportion of healthy older people have an mGFR of <60 ml/min per 1.73 m².

Structural Differences Between Aging Kidney and CKD

Among healthy kidney donors, aging is reflected by an indolent nephrosclerosis, characterized by arteriosclerosis, ischemic globally (but not segmentally) sclerotic glomeruli, and interstitial fibrosis and tubular atrophy.62 Although the interstitial fibrosis and tubular atrophy that occur with aging are fairly minimal,62 there is a substantial nephron loss and dropout (from about 1,000,000 nephrons per kidney in healthy adults aged 18–29 years to 500,000 per kidney in healthy individuals aged 70–75 years).63 Despite this substantial nephron loss with age, there is no compensation by the remaining nephrons because glomerular volume, single-nephron GFR, and single-nephron glomerular filtration capacity remain stable.63–65

CKD, on the other hand, is often characterized by disease-specific pathology that differs from age-induced nephrosclerosis. CKD can include unique microstructural findings (such as specific immunofluorescence staining patterns) or macrostructural findings (such as polycystic kidney or renal artery stenosis) that are not seen with aging alone. Although risk factors for CKD such as obesity, diabetes, and hypertension are associated with nephrosclerosis, they are also associated with glomerular enlargement, segmental glomerulosclerosis, and higher single-nephron GFR in intact nonsclerotic glomeruli.63,64 Only when the degree of global glomerulosclerosis exceeds that expected for age or when there is increased metabolic demand (e.g., obesity and hyperglycemia) is there an increase in single-nephron GFR. Therefore, application of age-adapted thresholds for glomerulosclerosis is also useful with kidney biopsies performed in clinical care, as only glomerulosclerosis exceeding that expected for age is a risk factor for CKD progression.66,67

Decline of GFR with Aging

As already stated, the definition of normality for laboratory results can also be obtained by the distribution of the results in healthy populations. Establishing reference interval values with a fixed threshold, as per the KDIGO guidelines, would mean that the GFR reference values are constant across all age categories.13,14,68–81 However, more reliable studies, using mGFR and living kidney donors or healthy individuals selected from the general population, indicate a clear decrease in GFR with age13–15,64,68–90 and show that the rate of mGFR decline becomes significant after age 40 years.2,12–15,73,76,80,85,88,91,92 Importantly, such a decline in mGFR with aging has been established on different continents and in different ethnic groups.68,77,79–81,87,89 From these data, it is obvious that a substantial proportion of healthy older people have an mGFR of <60 ml/min per 1.73 m², despite the paucity of studies focusing on the elderly and using mGFR.

Regarding eGFR,93–95 available cross-sectional studies from different parts of the world confirmed that many people older than 65 years of age have an eGFR value <60 ml/min per 1.73 m², suggesting a rather ubiquitous decline of eGFR with age.13,68,96–101 Unfortunately, the few published longitudinal studies have shown discrepancies in the rate of kidney function decline or suffered from methodological limitations, such as use of eGFR or 24-hour creatinine clearance, inclusion of non-healthy individuals, limited follow-up duration, and study attrition, making it difficult to draw a definitive conclusion about the magnitude of the average rate of GFR decline with aging.

Despite these limitations, all studies have shown a significant decline in GFR with aging in the majority of healthy participants.48,96,102–114 The only longitudinal study using mGFR in a healthy general population is the Renal Iohexol Clearance Survey in Tromsø 6, which included a representative sample of 1594 white people aged 50–62 years from the general population without CKD, diabetes, or cardiovascular disease. The iohexol clearance measurement was repeated in 1299 (81%) patients after a median period of 5.6 years. The authors showed a mean GFR decline rate of 0.84±2.00 ml/min per year (or 0.95±2.23 ml/min per 1.73 m² per year). Although this may be the most valid study to date, it nevertheless was limited by its inclusion of only middle-aged white people and by its relatively short follow-up, with only two measurements in the majority of participants.114

PROPOSALS FOR AN AGE-ADAPTED CKD DEFINITION

The concept of an age-defined adaptation of CKD is not new and has been proposed by a number of authors.2,3,8,10,31,33,34,36,48,90,99,115–124 Such adaptation could be achieved in different ways. We emphasize that the suggested change in CKD definition should pertain only to people without other evidence of kidney damage (notably those with normal urine ACR).

Age-Related Percentiles of GFR

One way to achieve an age-adapted definition of CKD is to refer to percentiles of GFR in the healthy population, which are available in the literature for mGFR or eGFR in different ethnic groups.13,68,96–99

In practice, this would mean interpreting a GFR result in light of age-specific GFR percentiles, and defining CKD as a value below a given percentile in healthy persons (Figure 2). By relating measurements to
percentiles using different mGFR or eGFR methods, this approach may overcome differences in mGFR measurement techniques or eGFR equations. Using percentiles for each year of age minimizes the “birthday paradox,” in which healthy people can become classified as having a disease or individuals with a disease can “recover” simply by becoming 1 year older; this problem is inherent to a single-threshold approach or an age-based approach with only a few thresholds.

By employing age-specific means and SDs, the individual patient levels can be transformed into a SD score (SDS), a metric commonly used in pediatrics (or even in adults for diagnosing diseases like osteoporosis, using bone mass density). An SDS value of ≤−2 corresponds to an mGFR/eGFR at the 2.5th percentile or lower. Calculation of an SDS requires well-characterized reference values across the entire age spectrum. Using these data, GFR SDS can be reported directly by the laboratory, analogous to reporting the eGFR results. The SDS is independent of age and method and is therefore ideal for follow-up. Furthermore, reference values may be included in the laboratory report (Figure 2).

A Limited Set of Age-Specific Thresholds

One can consider the CKD staging based on three pivotal age categories (Figure 3): <40 years, 40–65 years, and >65 years. We suggest GFR cut-offs of 75 ml/min per 1.73 m² for the youngest group, 60 ml/min per 1.73 m² for individuals aged 40–65 years, and 45 ml/min per 1.73 m² for those older than 65 years. In other words, in individuals older than 65 years, the current CKD category G3a/A1 (GFR 45–60 ml/min per 1.73 m²) would not be considered to have CKD. Moreover, younger adults with a GFR <75 ml/min per 1.73 m² would be considered to have CKD, as their kidney function is below what would be expected for their age.

The choice of the different GFR thresholds can be justified by associations of these thresholds with prognosis (Figure 1).

POTENTIAL EFFECT OF AN UPDATED DEFINITION OF CKD

A modification of the CKD definition would have a substantial effect on the estimation of CKD prevalence. The KDIGO guidelines used the data from the National Health and Nutrition Examination Survey (NHANES) study (1999–2006) and estimated the CKD prevalence in the US adult general population at 11.5%. Individuals with a GFR of 45–59 ml/min per 1.73 m² and normal urine ACR represented 3.6% of the general population, and 75% of patients that are classified with CKD solely by the GFR criterion. Individuals with category G3a/A1 represented >30% of all people with CKD. CKD categories 3 or 3a are unequivocally the largest or second largest group in terms of CKD prevalence in other studies as well.

The epidemiologic literature clearly shows that CKD prevalence increases with age when using the fixed-threshold CKD definition of 60 ml/min per 1.73 m², 1.48,56,97,123,130–139

Most older subjects defined as having CKD have a GFR of 45–59 ml/min per 1.73 m² and normal urine ACR, whereas the younger individuals more frequently have elevated urine ACR and GFR >60 ml/min per 1.73 m². 53,97,134,144

Thus, among the 3.6% of the general population with normal urine ACR and a GFR of between 45–59 ml/min per 1.73 m² in the NHANES (1999–2006) cohort, a large proportion are adults older than 65 years, without any other signs of kidney damage. These individuals would be considered free of disease with the age-adapted definition proposed above. Likewise, results from the MAREMAR (Maladies Rénales Chroniques au Maroc) study crucially illustrate the important effect of an age-adapted definition on the CKD prevalence. Among the 10,524 individuals screened, 2.7% had a confirmed eGFR <60 ml/min per 1.73 m². However, almost half of those with eGFR <60 ml/min per 1.73 m² had an eGFR above the third percentile of the population. These people, all older than 55 years and with normal dipstick analysis, would not be considered to have CKD with the age-adapted definition (using age-related percentiles) and the estimated CKD prevalence based on GFR would decrease from 2.7% to 1.8%, a 33% decrease. 97

The current fixed GFR threshold of 60 ml/min per 1.73 m² not only results in overdiagnosis of CKD in the older adults, it may also lead to missed diagnoses of CKD in younger individuals who lack overt signs of kidney damage and have a GFR above the fixed threshold of 60 ml/min per 1.73 m² but below the lowest percentile for their age. This group may include young people with low-nephron endowment, such as individuals born with a single kidney, those born preterm or at a low birth weight, patients with Down syndrome, or young people with a past history of treatment with nephrotropic drugs. Such individuals are at risk for developing progressive CKD over their remaining lifetime, and may experience associated comorbidities and adverse events, including an increase in mortality. 33,97,123,129

Because the availability of curative therapies is limited, treatment of CKD rests on the prevention of progressive kidney damage. The sooner younger people with CKD are identified, the greater the likelihood that poor health outcomes may be prevented. In the MAREMAR study, young individuals with a low-for-age GFR represented 1.3% of the population. These persons remain unrecognized in most epidemiologic studies that use a fixed GFR threshold of 60 ml/min per 1.73 m². 97,123 Using SDS, percentiles, or age-adapted staging in the definition of CKD would result in classifying these patients as having a disease. Further research, with a focus on long-term follow-up data, is warranted to elucidate whether such patients should be considered at risk for adverse renal or other disease-related outcomes.

Moving from a CKD definition with a fixed GFR threshold to a definition based on GFR adapted to age has several advantages. These include:

1. taking into account the physiologic age-related decline in GFR.
Figure 2. The interpretation of GFR results depends on age. Examples of interpretation of GFR (here GFR estimated using the FAS equation but the same can be applied to measured GFR or eGFR using other estimating equations) according to age and normal percentiles: abnormal (bottom) and normal (below) GFR result. The red circle corresponds to FAS=48 ml/min per 1.73 m² (serum creatinine [SCr]=1.3 mg/dl corresponds to SCr/Q=1.3/0.9=1.44>1.33) and the green circle corresponds to FAS=58 ml/min per 1.73 m² (SCr=1.1 mg/dl corresponds to SCr/Q=1.22<1.33). These results are abnormally low and normal predicted eGFR-FAS results with the age-adapted staging, respectively. Dark green shaded area corresponds to reference intervals for mGFR±SD and symmetrical limits for FAS based on SCr/Q=1 (middle line) and SCr/Q=1.33 (lower limit) (14). Light green area corresponds to the upper limit for FAS, based on SCr/Q=0.67. The interval (0.67 to 1.33) is considered the reference interval for SCr/Q. FAS, full age spectrum. Q, median SCr from healthy populations to account for age and sex.
2. fitting with reference distributions of mGFR and eGFR in healthy individuals.

3. consistency with the observed associations between low GFR and prognosis.

4. reconciling the two ways to define a disease—namely, the distribution of laboratory findings and the prognostic approach.

5. facilitating the identification, evaluation, and treatment of younger patients with a GFR that is too low for their age.

6. avoiding overdiagnosis of CKD in elderly patients.

Use of an age-adapted definition of CKD will also result in a much lower global CKD prevalence (perhaps by as much as 50%), particularly for elderly individuals. However, given that older adults without increased urine ACR or other signs of kidney damage usually have slightly decreased GFR that is physiologic and will on average remain stable (or could even improve) during follow-up, and have a mortality risk similar to those with higher GFR, there is no reason to consider such older individuals as living with a disease that requires investigations, referrals, and even therapeutic interventions with potential side effects. At an individual level, applying a CKD status to older people (“D” meaning “disease”) can sometimes be a source of unjustified stress. In some countries, this diagnosis can also lead to adverse consequences in terms of insurance. Using the age-adapted CKD definition could eventually result in more appropriate attention and directing resources to those who are at higher risk of adverse outcomes associated with CKD.

DISCLOSURES

Dr. Jager declared speaker honoraria from Fresenius and received grant support from European Renal Association – European Dialysis and Transplant Association. Dr. Schaeffner declared speaker honoraria from Fresenius Medical Care, Fresenius Kabi, and Siemens Health Care. Dr. White received grant support from Academic Science Center Alternate Funding Plan Innovation Fund. Dr. Melsom declared speaker honoraria from Astellas, Norwegian evening summit, American Society of Nephrology, 2018, and grants from Boehringer Ingelheim AS, outside the submitted work. Dr. van Londen declared speaker honoraria from Fresenius Medical Care. Dr. Rule declared royalties as “UpToDate” author on “The Aging Kidney.” Dr. van der Giet reports personal fees from Novartis, personal fees from Bayer, personal fees and “other” from IEM, personal fees and other from Charité Research Organization, grants from Deutsche Forschungsgemeinschaft, grants from Else Kröner Freseniusstiftung, personal fees from Berlin Chemie, personal fees from Otsuka, personal fees from Servier, and personal fees from CVRX, outside the submitted work. Dr. Glassock reports other from Wolters-Kluwer, outside the submitted work. Dr. Rule reports grants from National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, during the conduct of the study. All authors are members of the ERA-EDTA European Kidney Function Consortium.

REFERENCES

clinical characteristics associated with glomerul-
filtration rates in living kidney don-
14. Poppel H, Hoste L, Yao E, Delaney P:
Glomerular filtration rate in healthy living
potential kidney donors: A meta-analysis.
Nephron 135: 105–119, 2017
15. Gaillard F, Courbebaises M, Kamar N,
Rostaing L, Del Bello A, Girerd S, et al.: The
age-calibrated measured glomerular filtra-
tion rate improves living kidney donation
selection process. Kidney Int 94: 616–624,
2018
16. Matsushita K, van der Velde M, Astor BC,
Woodward M, Levey AS, de Jong PE, et al.:
Chronic Kidney Disease Prognosis Consor-
tium: Association of estimated glomerular
filtration rate and albuminuria with all-cause
and cardiovascular mortality in general pop-
ulation cohorts: A collaborative meta-analysis.
Lancet 375: 2073–2081, 2010
17. Hallan SI, Matsushita K, Sang Y, Mahmoodi
BK, Black C, Ishani A, et al.: Chronic Kidney
Disease Prognosis Consortium: Age and as-
sociation of kidney measures with mortality
and end-stage renal disease. JAMA 308:
2349–2360, 2012
18. Matsushita K, Ballew SH, Coresh J, Arima H,
Årnlov J, Cirillo M, et al.: Chronic Kidney
Disease Prognosis Consortium: Measures of
chronic kidney disease and risk of incident
peripheral artery disease: A collaborative
meta-analysis of individual participant data.
Lancet Diabetes Endocrinol 5: 718–728,
2017
19. Fox CS, Matsushita K, Woodward M, Bilo HJ,
Chalmers J, Heerspink HJ, et al.: Chronic
Kidney Disease Prognosis Consortium: As-
sociations of kidney disease measures with
mortality and end-stage renal disease in in-
dividuals with and without diabetes: A meta-
20. Nitsch D, Grams M, Sang Y, Black C, Cirillo
M, Djurdjev O, et al.: Chronic Kidney Dis-
ease Prognosis Consortium: Associations of
estimated glomerular filtration rate and
albuminuria with mortality and renal failure
21. Mahmoodi BK, Matsushita K, Woodward M,
Blankenstein PJ, Cirillo M, Ohkubo T, et al.:
Chronic Kidney Disease Prognosis Consor-
tium: Associations of kidney disease measures
with mortality and end-stage renal disease
in individuals with and without hypertension: A meta-analysis.
22. Matsushita K, Coresh J, Sang Y, Chalmers J,
Fox C, Guallar E, et al.: CKD Prognosis
Consortium: Estimated glomerular filtration
rate and albuminuria for prediction of car-
diovascular outcomes: A collaborative meta-
analysis of individual participant data. Lancet
23. Thomas B, Matsushita K, Abate KH, Al-Aly
Z, Årnlov J, Asayama K, et al.: Global Bur-
den of Disease 2013 GFR Collaborators;
CKD Prognosis Consortium; Global Burden
of Disease Genitourinary Expert Group:
Global cardiovascular and renal outcomes of
reduced GFR. J Am Soc Nephrol 28: 2167–
2179, 2017
24. Wen CP, Matsushita K, Coresh J, Iseki K,
Islam M, Katz R, et al.: Relative risks of
chronic kidney disease for mortality and end-
stage renal disease across races are similar.
25. van der Velde M, Matsushita K, Coresh J,
Chronic Kidney Disease Prognosis Consor-
tium: Lower estimated glomerular filtration
rate and higher albuminuria are associated
with all-cause and cardiovascular mortality.
A collaborative meta-analysis of high-risk
population cohorts. Kidney Int 79: 1341–
1352, 2011
26. Astor BC, Matsushita K, Gansevoort RT, van
der Velde M, Woodward M, Levey AS, et al.:
Chronic Kidney Disease Prognosis Consor-
tium: Lower estimated glomerular filtration
rate and higher albuminuria are associated
with mortality and end-stage renal disease.
A collaborative meta-analysis of kidney disease
population cohorts. Kidney Int 79: 1331–1340,
2011
27. Gansevoort RT, Matsushita K, van der Velde
Lower estimated GFR and higher albuminuria
are associated with adverse kidney outcomes.
A collaborative meta-analysis of general and
high-risk population cohorts. Kidney Int 80:
93–104, 2011
28. Hui X, Matsushita K, Sang Y, Ballew SH,
Fulop T, Coresh J: CKD and cardiovascular
disease in the atherosclerosis risk in com-
munities (ARIC) study: Interactions with age,
sex, and race. Am J Kidney Dis 62: 691–702,
2013
29. Go AS, Chertow GM, Fan D, McCulloch CE,
Hsu CY: Chronic kidney disease and the
risk of death, cardiovascular events, and
1305, 2004
30. Tangri N, Stevens LA, Griffith J, Tighiouart H,
Djurdjev O, Naimark D, et al.: A predictive
model for progression of chronic kidney dis-
ease to kidney failure. JAMA 305: 1553–1559,
2011
31. Delanaye P, Glasscock RJ, Pottel H, Rule AD:
An age-calibrated definition of chronic kidney
disease: Rationale and benefits. Clin Biochem
Rev 37: 17–26, 2016
32. Glasscock R, Denic A, Rule AD: When kidneys
get old: An essay on nephro-geriatrics. J Bras
Nefrol 39: 59–64, 2017
33. Glasscock RJ: Con: Thresholds to define chronic
kidney disease should not be age dependent.
Nephrol Dial Transplant 29: 774–779, dis-
cussion 779–782, 2014
34. Denic A, Glasscock RJ, Rule AD: Structural
and functional changes with the aging kidney. Adv Chronic
35. Manjunath G, Tighiouart H, Coresh J,
Macleod B, Salem DN, Griffith J, et al.:
Level of kidney function as a risk factor for
cardiovascular outcomes in the elderly. Kidney
36. O’Hare AM, Bertenthal D, Covinsky KE,
risk stratification in chronic kidney disease:
One size for all ages? J Am Soc Nephrol 17:
846–853, 2006
37. Maaravi Y, Bursztyn M, Hammerman-
Rozenberg R, Stessman J: Glomerular
filtration rate estimation and mortality in
an elderly population. QJM 100: 441–449,
2007
38. Hallan S, Astor B, Romundstad S, Aasgaard K,
Kvendal K, Coresh J: Association of kidney
function and albuminuria with cardiovascular
mortality in old vs younger individuals: The
HUNT II Study. Arch Intern Med 167:
2490–2496, 2007
39. Brantsma AH, Bakker SJL, Hillege HL, de
Zeeuw D, de Jong PE, Gansevoort RT;
PREVEND Study Group: Cardiovascular and
renal outcome in subjects with KDQOL stage
1-3 chronic kidney disease: The importance
of urinary albumin excretion. Nephrol Dial
40. Hwang SJ, Lin MY, Chen HC, Hwang SC,
Yang WC, Hsu CC, et al.: Increased risk of
mortality in the elderly population with late-
stage chronic kidney disease: A cohort study
in Taiwan. Nephrol Dial Transplant 23: 3192–
3198, 2008
41. Rodenick PJ, Atkins RJ, Smethell L, Mylne A,
Nitsch DD, Hubbard RB, et al.: CKD and
mortality risk in older people: A community-
based population study in the United King-
42. van der Velde M, Bakker SJL, de Jong PE,
Gansevoort RT: Influence of age and mea-
sure of eGFR on the association between
renal function and cardiovascular events.
43. Muntner P, Bowling CB, Gao L, Rik D, Sudd J,
Tanner RM, et al.: Age-specific association of
reduced estimated glomerular filtration rate
and albuminuria with all-cause mortality.
Clin J Am Soc Nephrol 6: 2200–2207,
2011
44. Stengel B, Metzger M, Froissart M, Rainfray
M, Ber C, Tzourio C, et al.: Epidemiology and
prognostic significance of chronic kidney
disease in the elderly--the Three-City pro-
cohort study. Nephrol Dial Transplant 26:
3286–3295, 2011
45. Van Pottelbergh G, Vaes B, Adriaensen W,
The glomerular filtration rate estimated by
new and old equations as a predictor of im-
portant outcomes in elderly patients. BMC Med:
12: 27, 2014
46. Oh SW, Kim S, Na KY, Kim KW, Chae DW,
Chin HJ: Glomerular filtration rate and pro-
tenuria: Association with mortality and renal
progression in a prospective cohort of a

10. Department of Nephrology, Charité - Universitätsmedizin Berlin, Berlin, Germany; 11. Department of Nephrology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; 12. Division of Nephrology, National University Hospital of Iceland, Reykjavik, Iceland; 13. Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands; 14. nephrology and Hypertension Section of Nephrology, Clinic of Internal Medicine, University Hospital of North Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; 15. Division of Nephrology, Dialysis, Apheresis Unit, Centre Hospitalier Universitaire Sart Tilman, ULg CHU, Liège, Belgium; 16. Department of Medical Informatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 17. Section of Nephrology, Clinic of Internal Medicine, University Hospital of North Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; 18. Department of Public Health and Primary Care, Katholieke University Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; 19. Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; 20. Charité – Universitätsmedizin Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Institute of Public Health, Berlin, Germany; 21. Centre for Kidney Research and Innovation, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, UK; 22. Department of Medicine, Queen’s University, Kingston, Ontario, Canada; 23. Department of Clinical Chemistry and Pharmacology, Laboratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden; and 24. Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands

See related perspectives, “Does eGFR by Any Number Mean the Same?” and “Modification of eGFR-Based CKD Definitions: Perfect, or Enemy of the Good?” on pages 1806–1807 and 1807–1809, respectively.

AFFILIATIONS

1. Department of Nephrology, Dialysis, Transplantation, University of Liège, Centre Hospitalier Universitaire Sart Tilman, ULg CHU, Liège, Belgium; 2. Department of Medical Informatics, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 3. Emma Children’s Hospital, Amsterdam UMC, Vrije University Amsterdam, Amsterdam, The Netherlands; 4. Department of Nephrology, Skåne University Hospital, Lund University, Malmö, Sweden; 5. Department of Nephrology, Dialysis, Hypertension and Functional Renal Exploration, Edouard Herriot Hospital, Hospices Civils de Lyon and Université Lyon 1, Lyon, France; 6. Metabolic and Renal Research Group, UIT The Arctic University of Norway, Tromsø, Norway; 7. Section of Nephrology, Clinic of Internal Medicine, University Hospital of North Norway, Tromsø, Norway; 8. Renal Transplantation Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France, Paris Sud University, Orsay, France; 9. Division of Nephrology and Dialysis, Department of Medicine, University of Verona, Verona, Italy; 10. Department of Nephrology, Charité – Universitätsmedizin Berlin, Berlin, Germany; 11. Department of Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; 12. Division of Nephrology, National University Hospital of Iceland, Reykjavik, Iceland; 13. Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, The Netherlands; 14. Nephrology, Dialysis and Renal Transplantation Department, Hôpital Nord, Centre Hospitalier Universitaire de Saint-Etienne, Jean Monnet University, Communauté d’Universités et Etablissements Université de Lyon, Lyon, France; 15. Nephrology, Dialysis, Apheresis Unit, Centre Hospitalier Universitaire Caremeau Nimes, University of Montpellier, Montpellier, France; 16. Equals AB, Uppsala, Sweden; 17. Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland; 18. Department of Public Health and Primary Care, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; 19. Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota; 20. Charité – Universitätsmedizin Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Institute of Public Health, Berlin, Germany; 21. Centre for Kidney Research and Innovation, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, UK; 22. Department of Medicine, Queen’s University, Kingston, Ontario, Canada; 23. Department of Clinical Chemistry and Pharmacology, Laboratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden; and 24. Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.