Soluble Urokinase Receptor (SuPAR) in COVID-19–Related AKI

Tariq U. Azam,1 Husam R. Shadid,2 Pennelope Blakely,1 Patrick O’Hayer,2 Hanna Berlin,2 Michael Pan,2 Peiyao Zhao,3 Lili Zhao,3 Subramaniam Pennathur,4 Rodica Pop-Busui,5 Izzet Altintas,7 Jens Tingleff,6 Marius A. Stauning,7 Ove Andersen,6 Maria-Evangelia Adami,8 Nicky Solomonidi,8 Maria Tsilika,8 Pinkus Tober-Lau,9 Eleni Arnaoutoglou,10 Verena Keitel,11 Frank Tacke,12 Athanasios Chalkias,10 Sven H. Loosen,11 Evangelos J. Giamarellos-Bourboulis,8 Jesper Eugen-Olsen,6 Jochen Reiser,13 and Salim S. Hayek,1 International Study of Inflammation in COVID-19*

Due to the number of contributing authors, the affiliations are listed at the end of this article.

ABSTRACT

Background AKI commonly occurs in patients with coronavirus disease 2019 (COVID-19). Its pathogenesis is poorly understood. The urokinase receptor system is a key regulator of the intersection between inflammation, immunity, and coagulation, and soluble urokinase plasminogen activator receptor (suPAR) has been identified as an immunologic risk factor for AKI. Whether suPAR is associated with COVID-19–related AKI is unknown.

Methods In a multinational observational study of adult patients hospitalized for COVID-19, we measured suPAR levels in plasma samples from 352 adult patients that had been collected within 48 hours of admission. We examined the association between suPAR levels and incident in-hospital AKI.

Results Of the 352 patients (57.4% were male, 13.9% were black, and mean age was 61 years), 91 (25.9%) developed AKI during their hospitalization, of whom 25 (27.4%) required dialysis. The median suPAR level was 5.61 ng/ml. AKI incidence rose with increasing suPAR tertiles, from a 6.0% incidence in patients with suPAR ≤4.60 ng/ml (first tertile) to a 45.8% incidence of AKI in patients with suPAR >6.86 ng/ml (third tertile). None of the patients with suPAR ≤4.60 ng/ml required dialysis during their hospitalization. In multivariable analysis, the highest suPAR tertile was associated with a 9.15-fold increase in the odds of AKI (95% confidence interval [95% CI], 3.64 to 22.93) and a 22.86-fold increase in the odds of requiring dialysis (95% CI, 2.77 to 188.75). The association was independent of inflammatory markers and persisted across subgroups.

Conclusions Admission suPAR levels in patients hospitalized for COVID-19 are predictive of in-hospital AKI and the need for dialysis. SuPAR may be a key component of the pathophysiology of AKI in COVID-19.

Over 7.5 million people worldwide have been infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with >425,000 deaths as of June of 2020 attributed to coronavirus disease 2019 (COVID-19).1 Although initially thought of as a mainly respiratory disease, close to 50% of patients hospitalized with COVID-19 develop AKI.2–7 The burden of AKI in COVID-19 has placed significant strain on resources for RRT.8 In an observational study of 3235 hospitalized patients with COVID-19 across the Mount Sinai Health System in New York, AKI occurred in 1406 patients (46%), of whom 280 (20%) required dialysis.7 Two-thirds of AKI cases were moderate to severe.7 The majority of patients had evidence of proteinuria.4,5 Other large studies from New York and China have reported similar findings.2–6 Most importantly, AKI is strongly associated with poor survival in COVID-19.4,6 Although attention has been directed to evidence of infection of renal tubular
epithelium and podocytes by the SARS-CoV-2 virus, the pathophysiology of AKI in COVID-19 is likely multifactorial and includes aggravation of prior risk factors, acute inflammation, cardiorenal syndrome, hemodynamic instability, and hypovolemia. The incidence of AKI in COVID-19 is similar to that reported in other pandemics, notably H1N1 influenza, suggesting that the systemic inflammatory response may be the main contributor to AKI in the setting of viral-related critical illness. There are no therapies or strategies to reduce the incidence of AKI in this patient population.

We have identified soluble urokinase plasminogen activator receptor (suPAR) as an immune mediator of kidney injury. suPAR is produced by cleavage of membrane-bound uPAR in response to inflammatory stimuli such as viruses, and cardiovascular risk factors such as smoking and diabetes mellitus. High suPAR levels predispose patients to AKI in various clinical scenarios including critical illness, likely by modulating mitochondrial respiration and inducing reactive oxygen species generation in proximal tubular cells, sensitizing them to additional damage. Most importantly, adverse effects of suPAR on the kidneys are abrogated by the use of an anti-suPAR mAb in experimental models, suggesting that suPAR is a promising therapeutic target to mitigate AKI. suPAR levels are dramatically elevated in COVID-19 and may be a key mediator of COVID-19–related AKI. We hypothesize that blood suPAR levels in patients hospitalized for COVID-19 are predictive of incident AKI. To test our hypothesis, we investigated the association between admission suPAR levels and incident AKI in patients hospitalized for COVID-19 enrolled in the International Study of Inflammation in COVID-19 (ISIC).
procedures for seamless data downloads to common statistical packages; and (4) procedures for data integration and interoperability with external sources.

Study Design and Definitions

For the purpose of this substudy of ISIC, we only included patients who had a blood sample collected within 48 hours of admission. Patients with a history of ESKD on dialysis, and those with AKI on admission (by comparing admission serum creatinine with measures within 1 year of admission), were excluded (Supplemental Figure 1). Overall, 352 participants of ISIC met inclusion criteria. The primary outcome was incident AKI during the hospitalization, defined on the basis of the Kidney Disease Improving Global Outcomes (KDIGO) criteria: AKI stage 1 was defined as a 1.5–1.9-fold increase in serum creatinine relative to the value on admission or a ≥0.3 mg/dl absolute increase in creatinine. Stage 2 AKI was defined as a 2.0–2.9-fold increase in serum creatinine compared with admission levels. Lastly, stage 3 AKI was defined as a threefold increase in serum creatinine compared with admission, a rise in creatinine to ≥4 mg/dl, or initiation of RRT.

Assessment of Kidney Function

Serum creatinine measurements on admission and all subsequent values during the index hospitalization were obtained from electronic medical records. The serum creatinine level at the time of suPAR measurement was used as the baseline value for all analyses. suPAR was measured on the day of admission in 327 (92.9%), and between 24 and 48 hours of admission in 25 (7.1%) patients. eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration equation.

Measurement of suPAR

suPAR was measured in plasma at participating centers using a commercially available ELISA (suPARnostic assay by Viro-Gates, Birkerød, Denmark) by experienced technicians blinded to the clinical data. The suPARnostic assay uses a double mAb sandwich assay to human suPAR. Kits have a lower detection limit of 100 pg/ml and intra- and interassay variation of 2.75% and 9.17%, respectively, as determined by the assay manufacturer.

Statistical Analyses

We first report cohort characteristics stratified by AKI and suPAR tertiles. Continuous variables are presented as means (±SD) or as medians (25th to 75th interquartile range [IQR]) for normally and non-normally distributed data, respectively. Categoric variables are presented as proportions (%). To compare patients with and without AKI, and across AKI stages or suPAR tertiles, we used ANOVA or Kruskal–Wallis for continuous variables, and chi-squared tests for categoric variables. We used Spearman-rank to assess correlations between suPAR and inflammatory biomarkers (CRP, D-dimer, ferritin, and LDH), and linear regression after log-transformation of the aforementioned markers (base 2, interpreted as per 100% increase) to identify those that were independently associated with suPAR.

To identify determinants of in-hospital AKI, we used logistic regression with AKI as the binary dependent variable in models that incorporated age, sex, race, country of enrollment (United States versus Europe), body mass index (BMI), diabetes mellitus, hypertension, coronary artery disease, congestive heart failure, oxygen saturation on admission, and eGFR derived from serum creatinine level obtained from the sample in which suPAR was measured. Each biomarker was evaluated in a separate model that included the aforementioned clinical characteristics in addition to suPAR.

We explored the association between suPAR and incident AKI using two approaches: binary logistic regression with in-hospital AKI as the dependent variable reporting odds ratio (OR), and modeling time to AKI using Cox regression hazards modeling reporting hazard ratio. Model 1 was unadjusted, including suPAR as tertiles with the first tertile being the reference. Model 2 was adjusted for age, sex, race, diabetes mellitus, hypertension, and eGFR to adjust for risk factors. Model 3 incorporated the aforementioned variables including oxygen saturation and CRP levels to adjust for disease severity.

For visualization, we plotted the daily percentage change in creatinine from admission stratified by suPAR tertiles using locally weighted smoothing. To assess suPAR’s effect on risk discrimination, we plotted receiver operating characteristic curves and computed the area under the curve (AUC) for model 0 incorporating age, sex, race, and admission eGFR, and for model 1 which includes variables from model 0 in addition to suPAR. We compared the AUCs for both models using DeLong’s test. Lastly, we investigated the possibility of effect modification attributed to differences in baseline characteristics. We tested for interaction and computed ORs for the association between suPAR levels and AKI in relevant subgroups. Two-tailed P values ≤0.05 were considered statistically significant. Analyses were performed using SPSS 24 (IBM, NY) and R (R Core Team, 2014).

RESULTS

Cohort Characteristics

Among 873 participants of ISIC, 352 met inclusion criteria for our study (Supplemental Figure 1). One hundred and 48 patients (42.0%) were admitted at the University of Michigan, and 204 (57.9%) at European centers (Supplemental Tables 1 and 2). Overall, the cohort had a mean age of 61 (range, 19–95) and consisted of 57.4% male and 13.9% Black patients (Table 1). The mean admission eGFR was 80 ml/min per 1.73 m², and 25.6% of patients had an eGFR <60 ml/min per 1.73 m². A total of 91 (25.9%) patients developed AKI during the hospitalization, among whom 43 (47.3%) had at least moderate AKI (stage 2 or 3 KDIGO), and 25 (27.5%) required RRT. The mean admission serum creatinine in patients with AKI was...
1.3 mg/dl (SD 0.9), whereas the mean peak creatinine was 2.8 mg/dl (SD 2.0). All patients requiring dialysis were in the intensive care unit. The median number of days on RRT was 5 (range, 1–12). Biomarkers of inflammation including CRP, ferritin, D-dimer, and LDH were significantly higher in patients with AKI compared with those without AKI (Table 1). In multivariable analysis, male sex and eGFR were independently associated with AKI. Younger age, lower eGFR, and lower oxygen saturation were associated with incident RRT. Among the biomarkers, only suPAR and CRP were independently associated with AKI (Table 2).

suPAR Level and Its Determinants

The median suPAR level in the entire cohort was 5.61 ng/ml (IQR, 4.00–7.88), close to threefold higher than that of healthy individuals (2.1 ng/ml). Patients in the highest suPAR tertile were more likely to be men, to be Black, and to have higher BMI, diabetes mellitus, hypertension, congestive heart failure, and lower eGFR on admission (Supplemental Table 3). suPAR levels correlated positively with CRP, D-dimer, ferritin, and LDH, independently of clinical characteristics (Supplemental Tables 4 and 5). Only congestive heart failure and eGFR were independently associated with suPAR levels (Supplemental Table 5).

suPAR and In-Hospital AKI in Patients with COVID-19

Patients who developed AKI during their hospitalization had a median suPAR level 61.6% higher than that of patients who did not develop AKI (Table 1). We found a step-wise rise in the incidence of AKI with increasing suPAR tertiles, from a 6% incidence in patients with suPAR<4.60 ng/ml (first tertile), to a 45.8% incidence of AKI in patients with suPAR levels >6.86 ng/ml (Figure 1A). Severity of in-hospital AKI correlated with admission suPAR levels: patients with KDIGO stage 2–3 AKI had significantly higher suPAR levels compared with those with mild AKI (Figure 1B). Serum creatinine levels steadily increased in patients with suPAR levels in the second and third tertiles, whereas they declined in patients in the first tertile (Figure 2). None of the patients with suPAR<4.60 ng/ml (first tertile) needed dialysis. Among those who required dialysis (n=25), we found a strong correlation between suPAR levels and the duration of RRT (r=0.74, P<0.001). The median duration of RRT in the third suPAR tertile (>6.86 ng/ml) was 6 days (IQR 3–8), compared with 3 days (IQR 1–3) in the second suPAR tertile (4.60–6.86 ng/ml), P=0.03.

Multivariable and Sensitivity Analyses

In unadjusted analysis, patients in the second and third suPAR tertiles had a 5.42-fold (95% confidence interval [95% CI], 2.27 to 12.93) and a 13.26-fold (95% CI, 5.69 to 30.88) increase in the odds of developing AKI, respectively, compared with the first tertile (Figure 3A). The highest suPAR tertile remained strongly associated with incident AKI (aOR, 9.15; 95% CI, 3.64 to 22.93) after adjusting for age, sex, race, and eGFR. Although the second tertile of suPAR was not associated with incident RRT (OR, 5.18; 95% CI, 0.60 to 45.0), patients in the third suPAR tertile had a 22.26-fold increase in the odds of requiring RRT (95% CI, 2.93 to 169.29). The association

Table 1. Clinical characteristics and inflammatory markers stratified by AKI

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cohort (n=352)</th>
<th>No AKI (n=261)</th>
<th>AKI (n=91)</th>
<th>P Valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in yr, mean (SD)</td>
<td>61 (16)</td>
<td>60 (17)</td>
<td>65 (15)</td>
<td>0.011</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>202 (57.4)</td>
<td>138 (52.9)</td>
<td>64 (70.3)</td>
<td>0.004</td>
</tr>
<tr>
<td>Black, n (%)</td>
<td>49 (13.9)</td>
<td>27 (10.3)</td>
<td>22 (24.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>Enrolled in the United States, n (%)</td>
<td>148 (42.0)</td>
<td>95 (36.4)</td>
<td>53 (58.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>BMI kg/m², mean (SD)</td>
<td>30 (7)</td>
<td>30 (7)</td>
<td>32 (7)</td>
<td>0.03</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>91 (25.9)</td>
<td>54 (20.7)</td>
<td>37 (40.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>169 (48.0)</td>
<td>110 (42.1)</td>
<td>59 (64.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Coronary artery disease, n (%)</td>
<td>34 (9.7)</td>
<td>22 (8.4)</td>
<td>12 (13.2)</td>
<td>0.19</td>
</tr>
<tr>
<td>Congestive heart failure, n (%)</td>
<td>29 (8.2)</td>
<td>14 (5.4)</td>
<td>15 (16.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>Admission eGFR ml/min per 1.73 m², mean (SD)b</td>
<td>80 (27)</td>
<td>85 (25)</td>
<td>67 (29)</td>
<td><0.001</td>
</tr>
<tr>
<td>Admission eGFR<60 ml/min per 1.73 m², n (%)b</td>
<td>90 (25.6)</td>
<td>51 (19.5)</td>
<td>39 (42.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Oxygen saturation on admission, %</td>
<td>94 (6)</td>
<td>95 (5)</td>
<td>92 (7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Required mechanical ventilation, n (%)</td>
<td>77 (21.9)</td>
<td>22 (8.4)</td>
<td>55 (60.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Required dialysis, n (%)</td>
<td>25 (7.1)</td>
<td>0 (0.0)</td>
<td>25 (27.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Biomarkers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suPAR ng/ml, median (IQR)</td>
<td>5.61 (4.00–7.88)</td>
<td>5.05 (3.51–6.70)</td>
<td>7.38 (5.50–10.38)</td>
<td><0.001</td>
</tr>
<tr>
<td>CRP mg/dl, median (IQR)</td>
<td>5.70 (2.58–12.50)</td>
<td>4.90 (2.00–9.80)</td>
<td>14.25 (7.80–22.80)</td>
<td><0.001</td>
</tr>
<tr>
<td>Ferritin ng/ml, median (IQR)</td>
<td>495 (234–1160)</td>
<td>465 (205–998)</td>
<td>595 (299–1350)</td>
<td>0.01</td>
</tr>
<tr>
<td>D-dimer mg/L, median (IQR)</td>
<td>0.72 (0.44–1.71)</td>
<td>0.63 (0.40–1.23)</td>
<td>1.10 (0.56–2.17)</td>
<td>0.005</td>
</tr>
<tr>
<td>LDH IU/L, median (IQR)</td>
<td>322 (232–472)</td>
<td>295 (220–407)</td>
<td>427.00 (313–592)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

aP value for the comparison between groups with and without AKI.
bCalculated using the Chronic Kidney Disease Epidemiology Collaboration equation.

cCRP levels were available in 301 participants, ferritin in 207 participants, D-dimer in 204 participants, and LDH in 256 participants.
between suPAR and RRT was not attenuated by adjusting for age, male sex, race, and eGFR (aOR, 22.86; 95% CI, 2.77 to 188.75). When examined as a continuous variable, a doubling of suPAR was associated with a 3.18-fold increase in the odds of developing AKI (95% CI, 2.18 to 4.63), and 3.28-fold odds of requiring RRT (95% CI, 1.93 to 5.57). The association was mildly attenuated after adjusting for clinical characteristics including eGFR (Model 2) and CRP (Model 3). Findings were consistent in a time-to-event analysis (Figure 3B). None of the other inflammatory biomarkers were associated

Table 2. Determinants of incident AKI and need for dialysis in hospitalized patients with COVID-19

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>AKI (n=91)</th>
<th>P Value</th>
<th>RRT (n=25)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td></td>
<td>OR (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Model 0: clinical characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, per 10 yr</td>
<td>0.91 (0.71 to 1.15)</td>
<td>0.42</td>
<td>0.56 (0.37 to 0.86)</td>
<td>0.007</td>
</tr>
<tr>
<td>Male</td>
<td>3.00 (1.65 to 5.46)</td>
<td><0.001</td>
<td>1.77 (0.65 to 4.82)</td>
<td>0.27</td>
</tr>
<tr>
<td>Black</td>
<td>1.99 (0.88 to 4.46)</td>
<td>0.10</td>
<td>3.77 (0.58 to 24.43)</td>
<td>0.16</td>
</tr>
<tr>
<td>Institution (United States versus Europe)</td>
<td>0.57 (0.30 to 1.08)</td>
<td>0.08</td>
<td>14.49 (2.40 to 87.58)</td>
<td>0.004</td>
</tr>
<tr>
<td>BMI, per 5 kg/m²</td>
<td>1.03 (0.83 to 1.27)</td>
<td>0.80</td>
<td>0.91 (0.61 to 1.36)</td>
<td>0.66</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1.46 (0.78 to 2.72)</td>
<td>0.24</td>
<td>2.30 (0.80 to 6.58)</td>
<td>0.12</td>
</tr>
<tr>
<td>Hypertension</td>
<td>1.13 (0.59 to 2.14)</td>
<td>0.72</td>
<td>1.53 (0.48 to 4.87)</td>
<td>0.47</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>0.74 (0.29 to 1.92)</td>
<td>0.54</td>
<td>0.61 (0.11 to 3.47)</td>
<td>0.57</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>1.35 (0.51 to 3.58)</td>
<td>0.55</td>
<td>0.76 (0.13 to 4.58)</td>
<td>0.76</td>
</tr>
<tr>
<td>eGFR, per 5 ml/min per 1.73 m²</td>
<td>0.87 (0.81 to 0.92)</td>
<td><0.001</td>
<td>0.81 (0.72 to 0.91)</td>
<td><0.001</td>
</tr>
<tr>
<td>Oxygen saturation, per 1%</td>
<td>0.96 (0.91 to 1.00)</td>
<td>0.06</td>
<td>0.91 (0.86 to 0.97)</td>
<td>0.002</td>
</tr>
<tr>
<td>Models 1–5: biomarkersa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>suPAR, per 100% increaseb</td>
<td>2.47 (1.60 to 3.79)</td>
<td><0.001</td>
<td>4.01 (2.01 to 7.99)</td>
<td><0.001</td>
</tr>
<tr>
<td>CRP, per 100% increase</td>
<td>1.37 (1.09 to 1.72)</td>
<td>0.04</td>
<td>1.11 (0.81 to 1.53)</td>
<td>0.53</td>
</tr>
<tr>
<td>Ferritin, per 100% increase</td>
<td>1.02 (0.81 to 1.27)</td>
<td>0.89</td>
<td>1.23 (0.78 to 1.94)</td>
<td>0.37</td>
</tr>
<tr>
<td>D-dimer, per 100% increase</td>
<td>1.09 (0.87 to 1.36)</td>
<td>0.46</td>
<td>1.01 (0.68 to 1.50)</td>
<td>0.97</td>
</tr>
<tr>
<td>LDH, per 100% increase</td>
<td>1.17 (0.69 to 2.00)</td>
<td>0.56</td>
<td>2.06 (0.89 to 4.77)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

aEach biomarker was evaluated in a separate model that included the listed clinical characteristics in addition to suPAR.

bSerum creatinine–derived eGFR measured at the time of suPAR sample collection was used in Model 1 assessing the association between suPAR and AKI. eGFR was measured at the time of suPAR collection. CRP levels were available in 301 participants, ferritin in 207 participants, D-dimer in 204 participants, and LDH in 256 participants.

![Figure 1. AKI stratified by suPAR levels. Bar graphs showing (A) the percentage of patients with incident AKI stratified by suPAR tertiles, and (B) the median suPAR levels across AKI stages. Note: stages 2–3 AKI here exclude patients on dialysis, which are shown in a separate bar graph. P value is derived from the chi-squared test in (A) and Kruskal–Wallis test in (B).](www.jasn.org)
Patients in the lowest suPAR tertile (\(<4.60 \text{ ng/ml}\)) had a low incidence of AKI (6%), with none requiring dialysis, whereas patients in the third tertile (\(\geq6.86 \text{ ng/ml}\)) had an incidence of AKI of 45.8% with 16.1% requiring dialysis. The association was independent of eGFR, disease severity, or other biomarkers of inflammation and persisted across subgroups. In light of recent studies showing a role for suPAR as an immune-mediator of kidney injury, our findings highlight suPAR as a potential contributor to the large burden of AKI in COVID-19.

suPAR is the circulating form of uPAR, a glycosyl-phosphatidylinositol-anchored (GPI) three-domain (D\(_1\), D\(_{II}\), and D\(_{III}\)) receptor protein encoded by the \(PLAUR\) gene, and expressed on a variety of cells, including immune cells, endothelial cells, and podocytes.19,44,45 The specific physiologic role of suPAR is unclear. Its levels in circulation reflect the aggregate activity of the uPAR system with respect to innate immune activity, proteolysis, and extracellular matrix remodeling.44,46,47 Although expressed at low levels in normal conditions, uPAR is induced during leukocyte activation and differentiation in response to environmental stimuli such as smoking and certain RNA viruses.48–50 Several proinflammatory conditions with high suPAR levels have a high incidence of kidney disease, including cardiovascular risk factors, autoimmune diseases, lung disease, atherosclerosis, cancer, heart failure, and critical illness.51–57 High levels of suPAR in circulation are strongly predictive of progressive kidney dysfunction, with prolonged exposure directly affecting the kidneys via pathologic activation of \(\alpha\beta3\) integrin expressed on podocytes, which induces small GTPase signaling (Rac-1) and podocyte foot process effacement leading to proteinuria and eventually chronic kidney dysfunction.18,19,21,28 Transgenic mice over-expressing suPAR develop proteinuric kidney disease and more-severe AKI after contrast injection.20,21,28 We found suPAR levels in COVID-19 to be almost threefold higher than in healthy persons (2.1 ng/ml),43 and as high as in critically ill patients who subsequently develop AKI.25

The pathophysiology of AKI in COVID-19 is unclear.58 Autopsy reports in patients with COVID-19 have revealed significant proximal tubular injury, and glomerular thrombi with lymphocyte and macrophage infiltration.9 Although a hypercoagulable state and microangiopathy are thought to be common mechanisms for both respiratory failure and AKI, D-dimer levels were not independently associated with AKI in our cohort. Direct infection of the kidney has also been shown, but its contribution to injury is unclear.9,58,59 Nevertheless, AKI in the setting of sepsis is complex and multifactorial, involving both intrinsic (risk factors and co-morbidities) and extrinsic processes (viral infection, hypovolemia, nephrotoxic drugs), with the immune system and acute inflammation having a central role and suPAR being one potential mediator.11,60

suPAR may be implicated in the pathogenesis of COVID-19–related AKI through multiple mechanisms. It has been previously shown to facilitate viral entry into kidney cells through \(\alpha\beta3\) integrin in hemorrhagic fever secondary to hantavirus, leading to disruption in cell permeability and
AKI.61–64 Whether SARS-CoV-2 infects kidney cells more readily in the presence of high suPAR needs to be explored. suPAR was initially thought to be involved in FSGS.18,19 Interestingly, histopathologic findings of FSGS and severe proteinuria have been reported in Black patients with COVID-19 and specifically those with high-risk homozygous APOL1 variants.10,65,66 We have previously shown that high suPAR levels and high-risk homozygous APOL1 variants are synergistic in activating \(\alpha_\text{v} \beta_3 \) integrins and in their association with the progression of kidney disease in two cohorts of Black patients.23 The same mechanism may be at play in patients with severe COVID-19. suPAR also affects proximal tubular cells, altering mitochondrial respiration and inducing oxidative stress.20 Other reports have suggested that high suPAR promotes fibrosis of the tubules in an integrin-dependent manner.19,21,67,68 These deleterious changes to podocytes and tubular cells have been abrogated by the use of anti-uPAR monoclonal antibodies in experimental models.18–20,69 Ultimately, only an in-human intervention assessing the effect of lowering suPAR on the incidence of AKI can provide definitive conclusion on its role as an immune-mediator of kidney injury.

The study has several strengths. It is a multinational study that relied on granular collection of clinical, laboratory, and outcome data throughout the COVID-19 hospitalization. Patients with a positive COVID-19 test who were not primarily admitted for COVID-19 were excluded from this cohort, allowing us to derive conclusions specifically related to severe COVID-19. We acknowledge a few limitations to the study. Patients from European centers were not consecutively

Figure 3. SuPAR and odds of COVID-19–related AKI. (A) Bar graph depicting ORs and 95% CIs for AKI according to admission suPAR tertiles. (B) Kaplan–Meier curves showing cumulative incidence of AKI stratified by suPAR tertiles with log-rank \(P \) value. Cox regression modeling hazard ratios are reported in the accompanying table. Model 1 was unadjusted. Model 2 was adjusted for age, sex, race, diabetes mellitus, hypertension, and eGFR at the time of sample collection for suPAR. Model 3 incorporated the aforementioned variables including oxygen saturation and CRP levels. Tertile 1 was the reference (R) group in all models. **\(P < 0.001 \). Data for model 3 were available in 301 participants.

Figure 4. Addition of suPAR improves the AUC for predicting AKI. Receiver operating characteristic curve for predicting AKI. Model 0 includes age, gender, race, and creatinine-derived eGFR at the time of suPAR measurement. Model 1 includes all aforementioned characteristics in addition to suPAR as a continuous variable.
enrolled, lending a risk of selection bias. However, the range of suPAR levels in this cohort was wide, thus limiting the effect of a selection bias on the validity of the association between suPAR and AKI. The association between suPAR and AKI was also similar when examining the European and the University of Michigan cohorts separately. Although COVID-19 is associated with a high incidence of proteinuria, we could not assess urine protein systematically assessed in ISIC.

In conclusion, suPAR levels were independently associated with incident AKI in patients hospitalized for COVID-19. In light of recent experimental data suggesting that suPAR is an immune-mediator of kidney injury, targeting suPAR should be considered as a strategy to mitigate AKI in COVID-19 and other patient populations at high risk of AKI.

DISCLOSURES

O. Anderson and J. Eugen-Olsen are named inventors on patents related to suPAR. J. Eugen-Olsen is a cofounder, shareholder, and chief scientific officer of ViroGates. J. Eugen-Olsen has a patent suPAR as a marker of low-grade inflammation issued to ViroGates. J. Reiser is cofounder of Trisaq, a biotechnology company developing drugs targeting suPAR. S. Hayek and J. Reiser are members of the scientific advisory board of Trisaq. J. Reiser has a patent US20110212083—Role of soluble uPAR in the Pathogenesis of Proteinuric Kidney Disease with royalties paid to Trisaq, a patent US9867923—Reducing Soluble urokinase Receptor in the Circulation with royalties paid to Miltenyi, a patent JP2016530510—Non-Glycosylated suPAR Biomarkers and Uses thereof with royalties paid to Trisaq, a patent US20160296592—Methods/Compositions for the Treatment of Proteinuric Diseases with royalties paid to Trisaq, a patent US9144594—Dynamin Mediated Diseases with royalties paid to Trisaq, and a patent US8809386—Dynamin Ring Stabilizers with royalties paid to Trisaq. All remaining authors have nothing to disclose.

FUNDING

S. Hayek is funded by National Heart, Lung, and Blood Institute grant 1R01HL153384-01 and the Frankel Cardiovascular Center COVID-19 Impact Research Ignitor (U-M G024231) award. E.J. Giamarellos-Bourboulis is supported by the Hellenic Institute for the Study of Sepsis. F. Tacke is supported through intramural funds from Charité Universitätsmedizin Berlin and the Berlin Institute of Health.

ACKNOWLEDGMENTS

The authors acknowledge the University of Michigan Medical School Research Data Warehouse and DataDirect for providing data aggregation, management, and distribution services in support of the research reported in
this publication. The authors are grateful to the services of the Microbiome Core supported by grant U2C DK110768, especially Chris Blair, the Michigan Clinical Research Unit including Wrenn Woodward and Dexter Hobdy, and the University of Michigan Medical School Central Biorepository for providing biospecimen storage, management, and distribution services in support of the research reported in the publication.

Dr. Salim S. Hayek is supported by the Michigan Center for Contextual Factors in Alzheimer’s Disease (P30-AG035900), the Michigan Institute for Clinical & Health Research (UL1-TR002240), the Mi-Kickstart Early-Stage Funding Award (CASE-244578), and personal fees from Trisqa, outside the submitted work. Dr. Rodica Pop-Busui reports grants from AstraZeneca, personal fees from Bayer, personal fees from Novo Nordisk, and personal fees from Boehringer Ingelheim, outside the submitted work. Dr. Subramaniam Pennathur is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (P30DK081943), outside the submitted work. Dr. Frank Tacke reports grants from Allergan, BMS, Inventiva, Gilead, and Galapagos, and personal fees from Allergan, BMS, Inventiva, Gilead, Pfizer, Abbott, Alnylam, and Novartis, outside the submitted work. Dr. Evangelos J. Giamarellos-Bourboulis reports grants from Abbott CH, grants and personal fees from InflaRx GmbH, grants from Axis Shield, grants and personal fees from XBiotech Inc, personal fees from Angelini Italy, grants and personal fees from BioMerieux, grants from Horizon 2020 ImmunoSep, grants from Marie-Curie ITN grant European Sepsis Academy, and grants from Novartis, outside the submitted work. Dr. Jesper Eugen-Olsen reports personal fees from ViroGates, outside the submitted work. Dr. Jochen Reiser reports personal fees from Biomerieux, personal fees from National Institutes of Health, grants from Nephcure, other from TRISAQ, grants and personal fees from Thermo BCT, personal fees from Astellas, personal fees from Massachusetts General Hospital, personal fees from Genentech, personal fees from Up to Date, personal fees from Merck, personal fees from Incetipncis, and personal fees from GLG, outside the submitted work.

Dr. Salim S. Hayek designed the study. Dr. Tariq U. Azam, Dr. Husam R. Shadid, Dr. Penneleope Blakely, Dr. Patrick O’Hayer, Dr. Hanna Berlin, Dr. Michael Pan, Dr. Izzet Altintas, Dr. Jens Tingleff, Dr. Maria-Evaiazza Adami, Dr. Nicky Solomonidi, Dr. Maria Tsilika, Dr. Pinkus Tober-Lau, Dr. Eleni Arnaoutoglou, Dr. Athanasios Chalkias, and Dr. Sven H. Loosen collected the data and performed quality control. Dr. Salim S. Hayek and Dr. Lili Zhao analyzed the data. Dr. Salim S. Hayek wrote the first draft of the manuscript. Dr. Tariq U. Azam, Dr. Husam R. Shadid, Dr. Penneleope Blakely, Dr. Patrick O’Hayer, Dr. Salim S. Hayek, Dr. Subramaniam Pennathur, Dr. Rodica Pop-Busui, Ove Andersen, Dr. Frank Tacke, Dr. Athanasios Chalkias, Dr. Sven H. Loosen, Dr. Evangelos J. Giamarellos-Bourboulis, Dr. Jesper Eugen-Olsen, and Dr. Jochen Reiser provided expert interpretation of the findings, and provided critical revisions to the manuscript. All coauthors had full access to the data and take responsibility for the integrity and accuracy of the data analysis. All authors approved the final version of the manuscript.

DATA SHARING STATEMENT

Data from ISIC can be made available upon request through a collaborative process. Please contact penegonz@med.umich.edu for additional information.

SUPPLEMENTAL MATERIAL

This article contains the following supplemental material online at http://jasn.asnjournals.org/lookup/suppl;doi:10.1681/ASN.2020060829/-/DCSupplemental.

ISIC Investigators.
Supplemental Figure 1. Patient selection flowchart.
Supplemental Figure 2. ROC curves for suPAR and admission eGFR.

Supplemental Table 1. Participating centers and number of patients included in the substudy.
Supplemental Table 2. Clinical characteristics and inflammatory biomarkers stratified by continent of enrollment.
Supplemental Table 3. Clinical characteristics and inflammatory biomarkers stratified by suPAR tertiles.
Supplemental Table 4. Correlation between suPAR and inflammatory biomarkers.
Supplemental Table 5. Determinants of suPAR levels.
Supplemental Table 6. Determinants of incident acute kidney injury and need for dialysis in hospitalized patients with COVID-19 after excluding 25 patients with suPAR levels measured 24–48 hours after admission.

REFERENCES

64. Hägele S, Müller A, Nussdag, et al.: Mortality of human renal cells is disturbed by infection with pathogenic hantaviruses. BMC Infect Dis 18: 645, 2018

AFFILIATIONS

1Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan

2Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan

3Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan

4Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan

5Division of Endocrinology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan

6Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark

7Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark

84th Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece

9Department of Anesthesiology and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany

10Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany

11Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany

12Department of Hepatology and Gastroenterology, Charité – Universitätsmedizin Berlin, Berlin, Germany

13Department of Medicine, Rush University Medical Center, Chicago, Illinois