




MRI Data Acquisition
All MRI scans were performed using a 3-Tesla whole-body
MRI scanner with a 20-channel head/neck receiver coil (Sie-
mens Skyra, Erlangen, Germany). CBF was measured using
pulsed arterial spin labeling (ASL), cerebral neurochemical
concentrations were measured with magnetic resonance spec-
troscopic imaging (MRSI), and white matter integrity was
measured by DTI. Neurochemicals measured were
N-acetylaspartate (NAA), Cho, glutamate and glutamine
(Glx), mI, and total creatine (Cr). Acquisition parameters
for eachmodality were designed to collect data from the whole
brain while maintaining good data quality, high signal-noise
ratio, and acceptable spatial resolution. Detailed protocols for
acquisition of CBF, cerebral neurochemicals, and white matter
integrity andMRI data analysis are presented in Supplemental
Material.

Research teammembers performing the MRI analysis were
not blinded to the visit number of the participant, However,

because of the design of the study with a
follow-up pre-KTMRI in 1 year with pa-
tients who were not transplanted, the
analysis team did not the know the exact
transplant status of a participant.

Primary and Secondary Outcomes
Our primary outcomes were the effects
of KT on whole-brain gray matter CBF,
cerebral neurochemicals (NAA/Cr, Cho/
Cr, Glx/Cr, and mI/Cr), and DTI-
measured whole-brain white matter
fractional anisotropy (FA) and mean dif-
fusivity (MD). As secondary outcomes,
to better understand possible anatomic
specificity of changes, we measured re-
gional CBF, FA, and MD in atlas-
defined anatomic regions distributed
across the entire brain.

Statistical Analyses
Baseline characteristics between patients
and controls were analyzed using descrip-
tive statistics. For categorical variables,
differences in frequencies were measured
using a nonparametric Fisher exact test.
For continuous variables, mean differ-
ences were measured using a two-sample
t test. Assumptions of normality for the
t test were inspected by the quantile-
quantile plot and histogram. For clinical
measurements, unadjusted one-way re-
peated ANOVA was used to measure the
continuous outcomes between patient
pre-KT and patient post-KT groups. Re-
siduals were assessed to evaluate the fit of
the underlying model assumptions.

Each imaging modality (ASL, MRSI, and DTI) was ana-
lyzed separately. Imaging data in controls, as well as pre-
and post-KT groups, were adjusted for covariates of age,32

race,33 sex,34 and education level35,36 that can confound
results. Because the exact time for KT is unpredictable, a
linear mixed model approach was used to account for re-
peated observations on participants. A linear mixed effects
model was fitted using the PROC GLIMMIX procedure by
incorporating correlations among the responses. To model
these correlations, we included random effects in the linear
predictor. Specifically, we used a random intercept for each
subject, which provides a compound symmetry covariance
structure. This linear mixed model is more flexible than
repeated measures ANOVA as it allows for variation in
time between scans and in the number of scans per partic-
ipant and allows the inclusion of participants who have
missing data at one or more time points without requiring
an imputation method.37,38 Each participant’s individual

Table 1. Baseline demographics and clinical characteristics of study
participants

Characteristic Controls, n519 Patients with ESKD, n529 P Value

Age, yr, mean 6 SD 48.7868.38 53.43611.38 0.11
Race, n (%) 0.65
White 17 (89.5) 25 (86.2)
Black 0 (0.0) 2 (6.9)
Other 2 (10.5) 2 (6.9)

Sex, n (%) 0.23
Men 9 (47.4) 20 (69.0)
Women 10 (52.6) 9 (31.0)

Education, n (%) 0.32
High school diploma 1 (5.3) 5 (17.2)
Some college 3 (15.8) 9 (31.0)
4-yr college degree 7 (36.8) 8 (27.6)
Graduate school 8 (42.1) 7 (24.1)

Comorbid conditions, n (%)
Coronary artery disease 0 (0.0) 3 (10.3) 0.27
Diabetes 0 (0.0) 7 (24.1) 0.03
Hypertension 5 (26.3) 25 (86.2) ,0.001
Stroke 0 (0.0) 1 (3.5) 0.99
Depression 2 (10.5) 7 (24.1) 0.29
Smoking 6 (31.6) 9 (31.0) 0.99

On anticoagulants, n (%) 2 (6.9)
Atrial fibrillation, n (%) 3 (10.3)
Cause of ESKD, n (%) NA NA
Diabetes 6 (20.7)
Hypertension 3 (10.3)
ADPKD 8 (27.6)
Other 12 (41.4)

Dialysis modality, n (%) NA NA
In-center hemodialysis 11 (37.9)
Home hemodialysis 3 (10.4)
Peritoneal dialysis 9 (31.0)
Not on dialysis 6 (20.7)

Continuous values are presented as mean6 SD. P values represent the unadjusted two-sample t test.
Categorical variables are presented as frequency (percentage). P values represent the unadjusted
nonparametric Fisher exact test. NA, not applicable; ADPKD, autosomal dominant polycystic kidney
disease.
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intercept was estimated in the model using the random in-
tercept term. Age was calculated at every time point in order
to both control for the effect of age and function as the time
variable. All available imaging data were included in the
model to detect any group differences between patients
pre-KT, patients post-KT, and controls. The pre-KT group
includes both pre-KT scans, if available; the post-KT group
includes both the 3- and 12-month post-KT scans, if avail-
able. The effects of group (control, pre-KT, and post-KT)
and covariates (age, race, sex, and education level) were

included as fixed effects. Residual plots were assessed to
evaluate the model fit. We performed pairwise testing of
the three groups using F and t tests as appropriate. We con-
structed scatterplots mapping each participant’s observed
measures over time (chronological age), showing both the
overall change with aging and the effect of KT. As a test for
whether there would be any change associated with time
alone, for those patients who had repeated pre-KT
MRI, the pre-KT scans were compared using the Wilcoxon
nonparametric signed rank test. Results with P,0.05 were

considered statistically significant.
All statistical analyses were performed
using R Studio (version 3.6.3) and
SAS (version 9.4; The SAS Institute,
Cary, NC).

RESULTS

Demographic and Clinical
Comparisons
A total of 48 participants (29 patients
and 19 controls) were enrolled (Table 1).
Of the 29 patients, 23 received a KT.
Twenty-two patients completed the
3-month post-KT MRI, and 18 com-
pleted the 12-month post-KT MRI
(Supplemental Figure 1). Four of the 29
patients were not transplanted within
1 year, and per study protocol, they un-
derwent repeated baseline MRI at 1 year
after enrollment. Patients and controls
had no differences in age, race, sex, or
education (all P.0.10) (Table 1). The
mean serum creatinine and eGFR for
controls were 0.8560.13 mg/dl and
92.8613.5 ml/min, respectively. Patients
with ESKD had a greater incidence of

Table 2. Pre- to post-KT changes in clinical measures

Clinical Measure
1-yr Pre-KT, n54,

Mean 6 SD
Pre-KT, n529,
Mean 6 SD

3-mo Post-KT, n522,
Mean 6 SD

12-mo Post-KT, n518,
Mean 6 SD

P Value

Hematocrit, % 33.964.6 33.364.1 39.764.2 43.664.2 ,0.001
Serum calcium, mg/dl 9.560.4 9.560.5 9.860.5 9.760.4 0.004
Serum bicarbonate, mEq/L 23.362.2 25.563.5 24.061.8 23.362.7 0.02
Serum creatinine, mg/dl NA NA 1.460.5 1.360.5 NA
eGFR, ml/min per 1.73 m2 NA NA 55.4613.7 55.7613.8 NA
Tacrolimus level, ng/ml NA NA 11.4612.4 7.863.2 NA
SBP, mm Hg 114.567.0 141.9616.5 137.5617.8 138.8615.1 0.69
DBP, mm Hg 62.3610.5 79.2610.3 77.7610.1 77.3613.2 0.98
HR, beats per minute 75.567.7 75.9614.5 75.4610.8 74.4616.1 0.67
BMI, kg/m2 31.063.8 30.064.8 30.065.1 35.0613.2 0.20

All measures are presented as mean 6 SD. P values represent unadjusted one-way repeated measures ANOVA for pre- to post-transplant comparison. NA, not
applicable; SBP, systolic BP; DBP, diastolic BP; HR, heart rate; BMI, body mass index.

Table 3. Overall gray matter and regional comparisons of CBF in patients with
ESKD pre-KT, patients with ESKD post-KT, and controls

Area of the Brain
Analyzed

P

Valuea

Pairwise Comparisons Estimated Difference (P Value)b

Change Pre- to
Post-KT

Pre-KT versus
Control

Post-KT versus
Control

Total gray matter ,0.001 27.24 (,0.001) 7.91 (0.003) 0.67 (0.78)
Regions analyzed
ACC 0.07 25.40 (0.02) 5.21 (0.20) 20.19 (0.96)
Frontal mid 0.008 27.37 (0.002) 7.00 (0.05) 20.37 (0.91)
Hippocampus ,0.001 28.67 (,0.001) 10.89 (0.002) 2.21 (0.46)
M1 0.002 26.30 (0.001) 7.58 (0.02) 1.28 (0.65)
PCC ,0.001 212.17 (,0.001) 9.39 (0.06) 22.78 (0.54)
Precuneus ,0.001 210.40 (,0.001) 9.12 (0.02) 21.28 (0.71)
Superior parietal 0.03 26.77 (0.01) 4.45 (0.24) 22.32 (0.49)
Temporal 0.001 25.84 (0.001) 7.69 (0.01) 1.85 (0.47)
Thalamus ,0.001 212.87 (,0.001) 13.15 (0.01) 0.28 (0.95)
Pallidum 0.03 26.11 (0.01) 5.77 (0.17) 20.35 (0.93)
Putamen 0.001 27.09 (0.001) 8.26 (0.02) 1.17 (0.71)
Caudate 0.008 27.13 (0.002) 6.63 (0.05) 20.49 (0.87)
Frontal 0.003 26.30 (0.001) 7.26 (0.01) 0.96 (0.71)
Parietal ,0.001 28.36 (,0.001) 8.85 (0.01) 0.49 (0.87)

ACC, anterior cingulate cortex; frontal mid, middle frontal gyrus; M1, primary motor cortex; PCC,
posterior cingulate cortex.
aP value for linear mixed model F test for any group differences between patients pre-KT, patients
post-KT, and controls, adjusted for age, race, sex, and education level. Pre-KT includes both pre-KT
scans, if available; post-KT includes both the 3- and 12-month post-KT scans, if available.
bP value for adjusted linear contrast of the pairwise estimated group differences t test. All units are in
milliliters per minute per 100 g tissue.
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diabetes (P50.03) and hypertension (P,0.001) compared
with controls. The most common causes of ESKD were diabe-
tes (21%) and autosomal dominant polycystic kidney disease
(28%). Six patients had not initiated dialysis at baseline.
Supplemental Table 1 describes the patients with and without
a post-KT MRI. Clinical characteristics pre- and post-KT are
summarized in Table 2. Hematocrit and serum calcium in-
creased and serum bicarbonate decreased after KT. Other pa-
rameters, such as BP, heart rate, and body mass index, did not
change with KT (all P50.10) (Table 2).

All transplanted patients received induction and mainte-
nance immunosuppression per institutional protocol.

Supplemental Table 2 describes the clinical characteristics of
the 22 patients who had a post-KT MRI. Per institutional
policy, ABO-incompatible KTs were not performed at our
center. Induction immunosuppression consisted of either
thymoglobulin or basiliximab (depending on immunologic
risk of the patient), steroids, and a mycophenolate com-
pound. A calcineurin inhibitor (tacrolimus) was started
24 hours after the surgery. Maintenance immunosuppres-
sion consisted of a mycophenolate compound and tacroli-
mus with or without low-dose steroids. Post-KT, all patients
were on tacrolimus and had a functional graft with a mean
serum creatinine of 1.460.5 mg/dl (Table 2). Supplemental
Table 3 shows all MRI measurements in controls and pa-
tients with ESKD. Individual imaging results are described
below. Supplemental Table 4 shows the estimated effect of
covariates for the MRI variables in the mixed model
analysis.

CBF
Table 3 shows the comparisons of adjusted CBF between dif-
ferent groups over the total gray matter and in specific ana-
tomic regions within the total gray matter mask. CBF in the
total gray matter was higher in patients with ESKD pre-KT
compared with controls (P50.003) (Figure 1, Table 3) and
normalized post-KT to values observed in controls. Figure 1
shows data for individual participants at pre- and post-KT for
comparison. When CBF was analyzed regionally, the decrease
in CBF with KT was consistent across all brain regions
(Table 3).

Brain Neurochemicals
Table 4 shows the group comparisons of different neurochem-
icals in the adjusted linear mixed model. Figure 2 shows data
for individual patients at different time points in the study. Of
the four neurochemicals that were analyzed, the Cho/Cr
(P50.001) and mI/Cr (P,0.001) were higher in patients
pre-KT compared with controls and normalized post-KT.
NAA/Cr and Glx/Cr were not different between the patients
pre-KT and controls and did not change post-KT.

White Matter Integrity
Figure 3 and Table 5 show adjusted group
comparisons of FA and MD for all tracts
and for each of the regional tracts. FA in-
creasedpre- topost-KT(P50.001).Neither
pre-KT (P50.23) nor post-KT (P50.72)
FA was different from controls. MD de-
creased post-KT (P,0.001). Similar to
FA, neither pre-KT (P50.33) nor post-KT
(P50.89) MD was different from controls.

Brain Changes without KT
Of the 29 patients with ESKD in the study,
four patients had a second pre-KT MRI
while awaiting KT. There was no change

p-values
Pre-vs. Post-KT < 0.0001
Pre-KT vs. control = 0.003
Post-KT vs. control = 0.78
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Figure 1. CBF in total gray matter was elevated in patients pre-
KT compared to controls, and normalized post-KT. Scatterplot
displays individual participant data as a function of age and
group (controls: black circles; pre-KT: blue triangles; post-KT:
orange squares). Dashed lines represent individual participant
trajectories over time. Distance between the solid lines repre-
sents the estimated group main effect (i.e., intercept) differences
for fixed covariate values of race (White), sex (men), education
(more than high school), and slice position (upper). The slope
of the solid lines represents the overall effect of age. P values
represent comparisons between the group main effects (i.e.,
intercepts).

Table 4. Comparisons of brain neurochemical concentrations normalized to
creatine in patients with ESKD pre-KT, patients with ESKD post-KT, and controls

Neurochemical
Analyzed

P

Valuea

Pairwise Comparisons Estimated Difference (P Value)b

Change Pre- to
Post-KT

Pre-KT versus
Control

Post-KT versus
Control

NAA-Cr 0.04 0.02 (0.14) 0.06 (0.08) 0.09 (0.02)
Cho-Cr ,0.001 20.03 (,0.001) 0.04 (0.001) 0.008 (0.47)
Glx-Cr 0.23 0.05 (0.23) 20.08 (0.10) 20.04 (0.47)
mI-Cr ,0.001 20.06 (,0.001) 0.11 (,0.001) 0.05 (0.05)
aP value for linear mixed model F test for any group differences between patients pre-KT, patients
post-KT, and controls, adjusted for age, race, sex, and education level. Pre-KT includes both pre-KT
scans, if available; post-KT includes both the 3- and 12-month post-KT scans, if available.
bP value for adjusted linear contrast of the pairwise estimated group differences t test. Units are ratios
to creatine.
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detected inCBF, cerebral neurochemicals, FA, orMDover 1 year
in these patients (all P.0.10) (Supplemental Table 5).

DISCUSSION

We found that structural and physiologic brain abnormal-
ities in ESKD reversed post-KT. CBF, which was elevated

pre-KT, decreased post-KT to levels in controls, both glob-
ally and in each anatomic region of gray matter analyzed.
Cho/Cr and mI/Cr, which were also elevated pre-KT, nor-
malized post-KT. Finally, with an increase in FA and
decrease in MD, white matter integrity also improved
post-KT. We also noted the expected age-related changes
in brain measurements that were controlled for in our linear
mixed model.
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Figure 2. MRSI-measured neurochemicals Cho and mI were elevated in patients pre-KT compared to controls, and normalized post-
KT; neurochemicals NAA and Glx were not impacted by ESKD. Panels display (A) NAA-Cr ratio, (B) Cho-Cr ratio, (C) Glx-Cr ratio, and (D)
mI-Cr ratio in patients pre-KT, patients post-KT, and controls. Scatterplots display individual participant data as a function of age and
group (controls: black circles; pre-KT: blue triangles; post-KT: orange squares). Dashed lines represent individual participant trajec-
tories over time. Distance between the solid lines represents the estimated group main effect (i.e., intercept) differences for fixed
covariate values of race (White), sex (men), and education (more than high school). The slope of the solid lines represents the overall
effect of age. P values represent comparisons between the group main effects (i.e., intercepts).
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The reversibility of brain abnormalities in CKDmight have
important mechanistic and therapeutic implications. Poten-
tial reversibility underscores an opportunity to develop im-
provedmanagement strategies other than KT for patients who
cannot be transplanted. Better dialysis techniques that include
targeting dialysis-related ischemia to reduce metabolic de-
rangements could help prevent and perhaps mitigate some
of these abnormalities. Preservation of residual renal function
to retain tubular secretion may also positively affect these
brain abnormalities. The overarching effect of our observa-
tions would be to identify patients with reversible versus irre-
versible brain abnormalities and to devise strategies to reverse
brain abnormalities with the goal of improving cognition.
Cognitive impairment is common in patients with ESKD un-
dergoing KTevaluation39 and affects eligibility for KT.40 How-
ever, given that cognitive impairment and brain abnormalities
might improve with KT, more of these patients who are cur-
rently rejected for KTmight get transplanted.

Elevated CBF seen in our patients pre-KT is consistent with
other studies in adult8,17 and pediatric41 patients with CKD.
Disruption of cerebral autoregulation due to inflammation
and endothelial dysfunction affecting the blood-brain barrier
may play a role.16,17 Alternatively, elevated CBF could be sec-
ondary to increased metabolic demand. Our results that CBF
decreased pre- to post-KT is consistent with prior cross-
sectional42 and longitudinal studies,43 although some other
studies found conflicting results,44,45 possibly due to differ-
ences in themethodology of assessing CBF. ASL has the advan-
tage of repeatability and ability to quantify global and regional
CBF.46 Because hemodialysis preferentially affects the

watershed areas of the brain,47 we also explored regional
changes in the brain in addition to global changes. All regions
showed a decrease in CBF (Table 3), pointing to systemic
etiologies, such as reduced inflammation and improvement
of cerebral autoregulation. It is also possible that CBF de-
creased due to the vasoconstrictive effects of calcineurin inhib-
itors. Distinct from the KT-related change in CBF, we observed
an age-related decrease in CBF in all participants, a well-
established phenomenon seen in the general population.48

Similar to other published studies, we found that pa-
tients pre-KT had higher cerebral Cho/Cr and mI/Cr com-
pared with controls.4,9–11 Both Cho/Cr and mI/Cr decreased
post-KT. Cho is a phospholipid cell membrane precursor and
represents breakdown products, such as phosphocholine,
phosphatidylcholine, glycerophosphorylcholine, and phos-
phorylcholine.22 Importantly, Cho is also a precursor of tri-
methylamine N-oxide, a marker of cardiovascular disease and
mortality.49,50 mI, primarily found in glial cells, is involved in
the phosphoinositide-mediated signal transduction and is a
marker of inflammation or gliosis.22 High plasma mI is also
associated with the high prevalence of peripheral polyneurop-
athy in ESKD.51With their relative small sizes (mol wt 105 and
180 g/mol, respectively), both compounds are readily filtered
by the glomeruli and eliminated with tubular secretion.52,53

Both plasma51,54 and intracerebral Cho andmI concentrations
are elevated in CKD21 and decrease only slightly with dialysis.9

Cho and mI are both major cerebral osmolytes, and high con-
centrations can increase osmotic pressure in the brain, cause
cellular edema, and alter cellular structure and function. Both
compounds are transported from the plasma to the brain
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Figure 3. Diffusion metrics (A) FA and (B) MD in whole brain changed pre- to post-KT. Scatterplots display individual participant data
as a function of age and group (controls: black circles; pre-KT: blue triangles; post-KT: orange squares). Dashed lines represent in-
dividual participant trajectories over time. Distance between the solid lines represents the estimated group main effect (i.e., intercept)
differences for fixed covariate values of race (White), sex (men), and education (more than high school). The slope of the solid lines
represents the overall effect of age. P values represent comparisons between the group main effects (i.e., intercepts).
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through the blood-brain barrier by diffusion and carrier me-
diated transporter systems.55,56 Because of the blood-brain
barrier, changes in plasma concentrations of neurochemicals
do not correlate with cerebral concentrations in healthy indi-
viduals.57 However, with the disruption of the blood-brain
barrier in CKD, higher serum concentrations could theoreti-
cally affect cerebral neurochemical concentrations. Our study
indicates normalization of Cho and mI post-KT, perhaps by
better eliminationwith tubular secretion,52,53 which cannot be
restored with dialysis or measured by creatinine clearance or
serum creatinine–based eGFR. Improvement in these neuro-
chemicals after KT could restore cerebral osmotic regulation,
lower cellular edema, and improve cell function and
cognition.

Similar to a prior cross-sectional study,9 we did not see any
differences in the levels of Glx/Cr and NAA/Cr between con-
trols and patients pre-KT, suggesting that CKD does not affect

these neurochemicals as much as Cho
and mI. Consistent with this hypothesis,
there was no change in Glx/Cr and NAA/
Cr pre- to post-KT. Glutamine is mainly
found in glia and is a precursor to gluta-
mate,22 the most abundant excitatory
neurotransmitter in the neurons. NAA
is also an osmolyte located in the cell
bodies, axons, and dendrites of neurons
and is a marker of neuronal number,
density, and integrity.58 NAA/Cr is often
reduced in neurodegenerative diseases
and may not be affected in CKD.22

Similar to our prior study,31 KTresul-
ted in an increase in FA and a decrease in
MD. A recent study demonstrated similar
findings.43 These changes in FA and MD
indicate decreased free dispersion and
greater axial movement of water mole-
cules along the white matter tracts. A
decrease in cerebral osmolytes and im-
provement in cerebral edema as described
above can explain these DTI results. Pre-
KT, even with maintenance dialysis, the
clearance of substances that are eliminated
by tubular secretion is reduced and can
result in (often subclinical) cerebral
edema. Although we have previously
shown that patients on dialysis have lower
FA and higherMDcomparedwith healthy
controls,59 we did not find FA and MD
values to be significantly different in pa-
tients pre-KT and controls in this study.
This could be because of the small sample
size and singleMRImeasurements in con-
trols leading to a larger SD.

The evidence that dialysis has short-
and long-term deleterious effects on

brain health is rapidly accumulating.4,5,9–15,19,20 Our MRSI
and DTI results indicate normalization of cerebral edema
post-KT, a finding that is not observed with dialysis. In fact,
cerebral edema increases with longer dialysis vintage and
higher ultrafiltration volumes.60 Similarly, change in CBF
with dialysis can be detrimental.2We demonstrate reversibility
in abnormalities in CBF, neurochemical concentrations, and
white matter integrity in ESKD. Because our study protocol
included repeated pre-KTMRI in patients who did not receive
KTwithin 1 year, we were able to compare pre-KT MRIs. We
did not observe any change in brain abnormalities. Although
we do not have the power to make definite conclusions in this
study, our findings are consistent with our previous work.59

Normalized brain abnormalities even after 12 months post-
KT indicate that the post-KT changes were not due to acute
effects of KT, such as steroids, but a phenomenon that persists
beyond the immediate post-KT period.

Table 5. Whole-brain and regional comparisons of diffusion metrics FA and MD
in patients with ESKD pre-KT, patients with ESKD post-KT, and controls

Regions and Metrics
Analyzed

P

Valuea

Pairwise Comparisons Estimated Difference (P Value)b

Change Pre- to
Post-KT

Pre-KT versus
Control

Post-KT versus
Control

All tracts FA 0.003 0.007 (0.001) 20.010 (0.23) 20.003 (0.72)
All tracts MD 0.001 20.022 (,0.001) 0.019 (0.33) 20.003 (0.89)
Regional FA
ATR 0.001 0.011 (,0.001) 20.018 (0.19) 20.007 (0.63)
CG 0.71 0.004 (0.58) 20.024 (0.52) 20.020 (0.59)
CH 0.51 0.011 (0.46) 0.017 (0.52) 0.028 (0.29)
CST 0.06 0.009 (0.02) 20.001 (0.93) 0.008 (0.50)
FMAJ 0.26 0.006 (0.14) 20.015 (0.40) 20.009 (0.62)
FMIN 0.22 0.006 (0.16) 0.008 (0.45) 0.014 (0.19)
IFOF 0.02 0.008 (0.01) 20.015 (0.20) 20.007 (0.56)
ILF 0.005 0.009 (0.002) 20.015 (0.16) 20.006 (0.58)
SLF 0.23 0.002 (0.54) 20.015 (0.09) 20.013 (0.14)
SLFT 0.60 0.002 (0.52) 20.010 (0.40) 20.007 (0.52)
UF 0.27 0.011 (0.15) 20.017 (0.31) 20.007 (0.70)

Regional MD
ATR 0.008 20.037 (0.002) 0.045 (0.47) 0.008 (0.90)
CG 0.002 20.016 (0.005) 0.020 (0.25) 0.004 (0.83)
CH 0.33 20.017 (0.50) 20.070 (0.25) 20.087 (0.15)
CST 0.12 20.011 (0.09) 20.013 (0.41) 20.024 (0.14)
FMAJ 0.004 20.042 (0.002) 0.049 (0.15) 0.007 (0.83)
FMIN 0.08 20.020 (0.03) 0.002 (0.92) 20.018 (0.35)
IFOF ,0.001 20.019 (,0.001) 0.027 (0.11) 0.009 (0.60)
ILF 0.003 20.023 (0.001) 0.026 (0.35) 0.002 (0.93)
SLF 0.003 20.012 (0.001) 0.022 (0.13) 0.009 (0.52)
SLFT ,0.001 20.010 (,0.001) 0.015 (0.12) 0.005 (0.59)
UF 0.33 20.020 (0.14) 0.009 (0.82) 20.011 (0.78)

ATR, anterior thalamic radiation; CG, cingulum in the cingulated cortex area; CH, cingulum in the
hippocampal area; CST, corticospinal tract; FMAJ, forceps major; FMIN, forceps minor; IFOF, inferior
fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus;
SLFT, temporal projection of the SLF; UF, uncinate fasciculus.
aP value for linear mixed model F test for any group differences between patients pre-KT, patients
post-KT, and controls, adjusted for age, race, sex, and education level. Pre-KT includes both pre-KT
scans, if available; post-KT includes both the 3- and 12-month post-KT scans, if available.
bP value for adjusted linear contrast of the pairwise estimated between-group differences t test. Units
are scalar (zero to one) for FA and 1023 mm2/s for MD.
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Despite themodest sample size, our longitudinal approach,
linear mixed model analysis, and a uniform change in mea-
sures among patients strengthen our findings. For example, all
patients had a decrease in CBF after KT. Unlike other studies,
our CBF calculations were corrected for hematocrit, which
affects blood viscosity.61 Because hematocrit changes follow-
ing KT, correction for hematocrit is important for accurate
CBF measurements in ESKD. Our models were adjusted for
age,32 race,33 sex,34 and level of education.35,36 Age in partic-
ular is associated with changes in brain volume and function,
and age-related changes observed over many years could be
larger than changes observed in the 12 months post-KT. An-
other strength was the measurement of regional CBF, FA, and
MD changes in addition to global changes.

In summary, abnormalities in CBF, neurochemical concen-
trations, and white matter integrity in CKD are normalized
with KT. This reversibility in brain abnormalities has impor-
tant implications in appreciating and managing the risk of
dementia and stroke in our CKD population. More studies
are needed to understand the mechanisms underlying these
brain abnormalities, to understand the role of residual kidney
function in preserving brain health on dialysis, and to explore
innovations in RRTs to mitigate these abnormalities even in
patients who cannot be transplanted.
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