








Kriz et al

Journal of the American Society of Nephrology 1735

thin fibrils corresponds to collagen Type VI has not
been established.

There are many studies showing that ECM proteins

are synthesized by mesangial cells and (at least in
part) also degraded by them. As a whole, It has been
suggested that the mesangial cell synthesis of ECM
proteins (40) may increase with elevated mesangial
cell/matrix strain, which will tend to decrease the
magnitude of the stress on Individual cells, especially
together with mesangial proliferation. Mesangial cell
production of neutral proteinase and other ECM-
degrading enzymes (44) suggests that mesangial cells
may be constantly “remodeling” matrix structures

including the perimesangial GBM. It Is possible that
this remodeling results in minimizing mechanical
stresses on the matrix, mesangial cells, and GBM.
Thus, some of the structure-stabilizing functions of
the mesanglal matrix may be adaptive over the long
term. The regulation of matrix turnover is stifi poorly
understood. There is evidence that the disregulation
of matrix production in certain glomerulopathies rep-
resents an Important mechanism in the development
of sclerosis (34,40,45).

THE GBM

The GBM represents the effector site in this system.

It serves as that part of the tuft where the hydrostatic
forces, and mesanglal cell counterforces, act. It repre-
sents the boundary between high- and low-pressure

regions.

The GBM is built upon a dense network of collagen
Type IV. Because of its presumed high tensile
strength, the GBM may be regarded as the skeleton of

the glomerulus. Although several models of a submi-
croscopic architecture have been proposed, none of
them has received general acceptance (46,47). Re-
gardless of its exact submicroscopic structure, the
question may be raised as to whether the physical
properties of the GBM are consistent with the above-
mentioned role. Its network structure suggests that
the GBM has tensile strength and that It Is an elastic
structure able to develop wall tension. It is, however,

unknown just how distensible the GBM is (i.e., how

large are its restoring forces against stretch) and how
great its tensile strength is. No direct measurements
of the distensibility of the GBM are available.

Some light might be shed on the physical properties
of the GBM by comparison with the tubular basement

membrane (TBM). The proximal TBM has been shown

to be quite distensible (48,49). The GBM is thicker

than the TBM; thus, its resistance to distension might

be expected to be greater than that of the TBM. Data

from the isolated perfused kidney (IPK), on the other

hand, suggest that the GBM is in fact quite distensi-
ble. In the IPK, perfusion pressure-dependent In-
creases in GBM surface area up to 75% have been
demonstrated (50,51). If an increase In GBM surface

area occurs in the IPK, but not in the normal kidney in
situ, this may be due either to higher transmural

pressure gradients (that probably occur) and/or to the
failure of some component(s) of the structure-stabillz-
ing system in the IPK. It has been hypothesized that

the lack of vasoconstrictor agents In the perfusate,
together with the high levels of nitric oxide resulting
from a lack of inactivation by hemoglobin, play a

major role in the hemodynamics of the IPK (52),

possibly resulting in the failure of the structure-sta-

bilizing systems. Both failure of the mesangium (the

mesangial matrix largely disappears) and failure of the

counterbalancing action ofpodocytes may be relevant.
These data suggest that glomerular capillaries-if
their walls were simply GBM cylinders-would be
expansile to a considerable degree.

In sharp contrast to this, evidence from the hydro-

nephrotic kidney preparation ( 1 1 ,53) suggests that
glomerular capillaries in vivo do not distend signifi-
canfly under the Influence of increasing perfusion
pressures. The same is seen to be the case in glomer-
uli after in viva perfusion fixation (published data of
some increase in capillary volume in response to

increases in perfusion pressure [40] may actually

show an increase in tuft volume from underperfused

to adequately perfused glomeruli). If the GBM itself is

intrinsically distensible, as suggested by the IPK, but

glomerular capillaries do not expand when exposed to
high intraluminal pressures under physiologic condi-
tions, this implies that some other tuft structure is
stabilizing the GBM against elastic expansion.

The existence of additional structure-stabilizing
components In the glomerular tuft is also suggested
by consideration of glomerular tuft structure In rats

after treatment with anti-Thy I antibodies, which re-
sults in the lysis of mesanglal cells (54). There is

capillary and mesangial expansion and considerable
unfolding ofthe GBM, but some ofthe intricate form is
quite well preserved, including frequently sharp bends
at mesangial angles (Figure 4). If the glomerular tuft
were just an elastic bag of basement membrane with
mesangial braces, widespread mesangial cell destruc-

tion might be expected to lead to nearly complete

structural simplification. Thus, additional form-stab!-
lizing forces appear to be active in the glomerular tuft
and to account for the partial preservation of tuft form
in settings such as mesanglolysis.

INTRINSIC BENDING RESISTANCE OF THE GBM

A contribution of the GBM to capillary “rigidity” has
been suggested before (55). We suggest that the GBM

may in fact contribute to the structural stability of the
glomerular tuft by virtue of its intrinsic resistance to

bending, on the basis of its elastic network structure.

An elastic membrane tends to resist bending from its

neutral position because bending results in elastic

expansion of one membrane surface and compression

of the other surface. Similar considerations have been
advanced to explain the shape of lipid bilayers (56).
The GBM is synthesized by the glomerular cells In a

curved form and probably has a tendency to keep this
shape despite perturbing forces.
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Figure 5. Tangential section through the layer of podocyte
foot processes (FP) investing a glomerular capillary. At a
central point (asterisk), this section grazes the GBM. Many of
the foot processes are cut In parallel to their longitudinal
axis. Foot processes emerging from two different primary
processes (P1, P2) interdlgltate with each other. The foot
processes contain longitudinally arranged microfllament
bundles (arrows) that appear to anchor to the dense cyto-
plasm of the sole plates above the GBM. Primary processes
(P2) contain abundant microtubules (MT). SD, slit diagram.
Magnification, - x21 100.

FIgure 4. Part of a glomerular lobule in anti-Thy 1-antibody
mesangiolysis (rat). Despite the total destruction of the me-
sangium, resulting In a dramatic widening of mesangial as
well as capillary spaces, numerous angles in the GBM are
maintained (arrows). At such sites, a broad podocyte pro-
cess is frequently seen interconnecting opposing parts of the
GBM and thus stabilizing the angle. (b) Arrangement of a
podocyte process located in the angle between two capil-
laries (1 and 2). Mlcrofilament bundles are accumulated in

ROLE OF PODOCYTES IN INTERCONNECTING
NEIGHBORING CAPILLARIES

Because podocyte processes do not completely sur-
round the glomerular capillary, they cannot contrib-
ute to the stabilization of local capillary form in the
same way as does the mechanical unit of the GBM-
mesangial cell (3). Podocytes may, however, contrib-
ute to the stabilization of the large-scale capillary
pattern. They are generally attached to several capil-
lary loops via their secondary and foot processes. The

structure of the cytoskeleton does not suggest that a

single podocyte would be able to establish a strong

mechanical linkage among the capifiaries to which its

processes attach. Cytoskeletal elements passing from

one process through the cell body into other processes

are not prominent features. On the other hand, it is

frequently seen that the narrow angles between neigh-
boring capillaries are filled by single, large, podocyte
cell processes (FIgure 4), that bridge the angle between

the two capillaries and that contain abundant micro-

ifiaments. These connections may contribute to the

stability of the folding pattern of the GBM. Even at

the cytoplasm of this process. Magnification: (a) - x4,200;
(b) -xll,500.
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some distance from such an angle, processes are
encountered that anchor onto different capillary
loops. Such sites also contain dense assemblies of
microfilaments and are sites of accumulation of a
specific podocyte cytoskeletal protein (57).

PODOCYTE AS PERICYTE

The podocyte Is attached by foot processes to the

GBM over almost the entire external GBM surface.
Whether or not the foot processes abut the GBM at a
preferred angle to the capillary axis (whether or not

the foot processes are isotropic) is not known and

must await quantitative study. The podocyte foot pro-
cesses possess a well-developed contractile system

(actin, ct-actinin, myosin) arranged longitudinally in

each foot process and anchored to bundles of micro-

tubules in the primary processes (Figures 5 and 6)

(58-60). By way of intermediate proteins (vinculin,

talin) and membrane-spanning integrins (in this case,

a3 / 131), this system attaches tightly to collagen Type

IV, fibronectin, and laminin of the GBM (43,61). The

foot process attachments probably act as numerous,

small, stabilizing patches on the GBM, counteracting

local elastic distension of the GBM in the direction of

the foot process. The simplest interpretation would be

C �

Figure 6. (a to C) Scheme of the arrangement of cytoskeletal
elements In primary processes (P) and foot processes (FP) of
podocytes. (a) Seen from above, (b) seen In cross-section
parallel to the long axis of foot processes, and (c) seen
perpendicular to the long axis of foot processes. Two pri-
mary processes with their foot processes (one is stippled,
one white) are shown. The microtubules (open tubes) are
arranged longitudinally In the primary processes. The micro-
filaments (solid thin lines) form arched bundles extending
from one foot process to the next one. Within the foot
processes, prominent bundles of the microfilaments are
oriented longitudinally in the upper and medial portions.
Thin bundles of mlcrofilaments descend to the dense cyto-
plasm In the sole plate of the foot processes (shown in Panel
b) (Modified after Ref. 59).

that the foot processes may simply serve as a second-
ary, parallel system of mechanical support, assuring
that the GBM never even approaches Its tensile

strength limit (48,49).
Because, however, the podocyte foot processes in-

dude elements ofa contractile system, the actual tone
of this system may be subject to regulation and may

influence the strength of the total elastic restoring
forces of the capillary wall (50). Such a system could
underlie several possible regulatory functions. First,
varying restoring forces at a given transmural pres-

sure difference might result in different degrees of

capillary wall expansion associated with changes in
filtration surface area. Second, if the hydraulic perme-

ability of the GBM is a function ofits elastic distension

and/or compression (62,63)-as might be expected in
a fiber matrix model of the GBM (64)-then an adjust-

able system influencing local distension of a large part
of the GBM would serve to stabilize the hydraulic

permeability in the face of changes in the wall stress of

the glomerulus. So far, podocytes have been shown to

have receptors for several vasoactive substances, in-
cluding endothelin (65), atrial natriuretic peptide (66),
and nitric oxide (67), and possibly also for angiotensin
II (68). Thus, alterations in in response to the
vasoactive substances mentioned above may be due in
part to changes in the contractile tone of podocyte foot

processes (producing changes either in the hydraulic

permeability or in the surface area of the GBM) rather

than to dynamic changes In mesangial cell contractil-

ity.

CONCLUSION

The stabilization of the glomerular tuft architecture
against intrinsic expansile forces is incompletely un-
derstood. The basic supporting system Is provided by
the mesangium in conjunction with the GBM. Podo-
cytes appear to be superimposed to this system and

may contribute to the stabilization of the higher order

capillary pattern, as well as counteract local elastic
distension of the capillary wall.
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