














Structure-Stabilizing Forces
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Figure 4. Part of a glomerular lobule in anti-Thy 1-antibody
mesangiolysis (rat). Despite the total destruction of the me-
sangium, resulting in a dramatic widening of mesangial as
well as capilliary spaces, numerous angles in the GBM are
maintained (arrows). At such sites, a broad podocyte pro-
cess is frequentily seen interconnecting opposing parts of the
GBM and thus stabilizing the angle. (b) Arrangement of a
podocyte process located in the angle between two capil-
laries (1 and 2). Microfilament bundles are accumulated in
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Figure 5. Tangential section through the layer of podocyte
foot processes (FP) investing a glomerular capilliary. At a
central point (asterisk), this section grazes the GBM. Many of
the foot processes are cut in paraillel to their longitudinal
axis. Foot processes emerging from two different primary
processes (P,, P,) interdigitate with each other. The foot
processes contain longitudinally aranged microfilament
bundies (arrows) that appear to anchor to the dense cyto-
plasm of the sole plates above the GBM. Primary processes
(P;) contain abundant microtubules (MT). SD, slit diagram.
Magnification, ~x21,100.

ROLE OF PODOCYTES IN INTERCONNECTING
NEIGHBORING CAPILLARIES

Because podocyte processes do not completely sur-
round the glomerular capillary, they cannot contrib-
ute to the stabilization of local capillary form in the
same way as does the mechanical unit of the GBM-
mesangial cell (3). Podocytes may, however, contrib-
ute to the stabilization of the large-scale capillary
pattern. They are generally attached to several capil-
lary loops via their secondary and foot processes. The
structure of the cytoskeleton does not suggest that a
single podocyte would be able to establish a strong
mechanical linkage among the capillaries to which its
processes attach. Cytoskeletal elements passing from
one process through the cell body into other processes
are not prominent features. On the other hand, it is
frequently seen that the narrow angles between neigh-
boring capillaries are filled by single, large, podocyte
cell processes (Figure 4), that bridge the angle between
the two capillaries and that contain abundant micro-
filaments. These connections may contribute to the
stability of the folding pattern of the GBM. Even at

the cytoplasm of this process. Magnification: (a) ~x4,200;
(b) ~x11,500.
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some distance from such an angle, processes are
encountered that anchor onto different capillary
loops. Such sites also contain dense assemblies of
microfilaments and are sites of accumulation of a
specific podocyte cytoskeletal protein (57).

PODOCYTE AS PERICYTE

The podocyte is attached by foot processes to the
GBM over almost the entire external GBM surface.
Whether or not the foot processes abut the GBM at a
preferred angle to the capillary axis (whether or not
the foot processes are isotropic) is not known and
must await quantitative study. The podocyte foot pro-
cesses possess a well-developed contractile system
(actin, a-actinin, myosin) arranged longitudinally in
each foot process and anchored to bundles of micro-
tubules in the primary processes (Figures 5 and 6)
(68-60). By way of intermediate proteins (vinculin,
talin) and membrane-spanning integrins (in this case,
a3/pB1), this system attaches tightly to collagen Type
IV, fibronectin, and laminin of the GBM (43,61). The
foot process attachments probably act as numerous,
small, stabilizing patches on the GBM, counteracting
local elastic distension of the GBM in the direction of
the foot process. The simplest interpretation would be

Figure 6. (a to ¢) Scheme of the arrangement of cytoskeletal
elements in primary processes (P) and foot processes (FP) of
podocytes. (a) Seen from above, (b) seen in cross-section
parallel to the long axis of foot processes, and (c) seen
perpendicular to the long axis of foot processes. Two pri-
mary processes with their foot processes (one is stippled,
one white) are shown. The microtubules (open tubes) are
arranged longlitudinally in the primary processes. The micro-
filaments (solid thin lines) form arched bundles extending
from one foot process to the next one. Within the foot
processes, prominent bundies of the microfilaments are
oriented longitudinally in the upper and medial portions.
Thin bundles of microfilaments descend to the dense cyto-
plasm in the sole plate of the foot processes (shown in Panel
b) (Modified after Ref. 59).
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that the foot processes may simply serve as a second-
ary, parallel system of mechanical support, assuring
that the GBM never even approaches its tensile
strength limit (48,49).

Because, however, the podocyte foot processes in-
clude elements of a contractile system, the actual tone
of this system may be subject to regulation and may
influence the strength of the total elastic restoring
forces of the capillary wall (50). Such a system could
underlie several possible regulatory functions. First,
varying restoring forces at a given transmural pres-
sure difference might result in different degrees of
capillary wall expansion associated with changes in
filtration surface area. Second, if the hydraulic perme-
abllity of the GBM is a function of its elastic distension
and/or compression (62,63)—as might be expected in
a fiber matrix model of the GBM (64)—then an adjust-
able system influencing local distension of a large part
of the GBM would serve to stabilize the hydraulic
permeability in the face of changes in the wall stress of
the glomerulus. So far, podocytes have been shown to
have receptors for several vasoactive substances, in-
cluding endothelin (65), atrial natriuretic peptide (66),
and nitric oxide (67), and possibly also for angiotensin
II (68). Thus, alterations in K, in response to the
vasoactive substances mentioned above may be due in
part to changes in the contractile tone of podocyte foot
processes (producing changes either in the hydraulic
permeability or in the surface area of the GBM) rather
than to dynamic changes in mesangial cell contractil-

ity.

CONCLUSION

The stabilization of the glomerular tuft architecture
against intrinsic expansile forces is incompletely un-
derstood. The basic supporting system is provided by
the mesangium in conjunction with the GBM. Podo-
cytes appear to be superimposed to this system and
may contribute to the stabilization of the higher order
capillary pattern, as well as counteract local elastic
distension of the capillary wall.
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