From middle age onward, declines in GFR occur in many individuals and damage appears in various parts of the kidney. Usually, these age-dependent changes proceed slowly and function remains adequate for survival, but if other diseases are present, such as hypertension or diabetes, the aging kidney becomes vulnerable to failure. In addition, the aging kidney is susceptible to drug toxicity due to alterations in renal handling of drugs and their metabolites, and to alterations in the balance between vasoconstrictor and vasodilator influences. This bleak outlook, however, has been challenged by the results of the Baltimore Longitudinal Study, which show that an age-dependent fall in GFR is not inevitable. Thus, age-related changes in the kidney may be separated into normal aging and a variable occurrence of specific diseases. These aspects have been reviewed in a number of recent articles that concentrate on clinical aspects of the aging kidney (1-4). The present article focuses on animal studies, specifically of the rat, and addresses the mechanisms by which aging processes affect kidney structure and function, and contribute to increased susceptibility to diseases.

Structural Changes in the Aging Kidney

Kidney Size and Nephron Number

Summarizing the published data, hypertrophy, atrophy, and unchanged renal size have all been reported in senescent rats, based on wet kidney weights. This variability in kidney size with age may be due in part to the variable relationship between kidney and body size in different strains of rats. As a rule, during young adulthood, the kidney and body weight increase in parallel (5,6). Later, after the kidney has reached its optimal size (at approximately 8 mo of age), the ratio of kidney to body weight varies widely, depending on fat accumulation and, in some strains, renal hypertrophy. This age-related renal hypertrophy, regardless of the changes in body weight, occurs in male rats of many, but not all, strains and in some female rats (5-13). Age-dependent enlargement of glomeruli is usually in proportion to the increase in renal mass (9-11,14-17). Morphometric measurements indicate a proportional increase in glomerular tuft and Bowman's space. Within the glomerular tuft, mesangial matrix is markedly expanded and basement membrane thickness is increased throughout life. Despite hypertrophy of the whole glomerulus, the available capillary surface area, the width of the epithelial slit diaphragms, the length of foot processes, and the size of the endothelial fenestrae are not altered in female rats up to 42 mo of age (9).

In males, glomerular hypertrophy is moderate and a decrease occurs in capillary surface area from 12 to 30 mo, due to a reduction in the number of glomerular capillaries or their tortuosities, resulting in a lower available filtering area (8,14). The impact of aging on nephron number in rats differs according to strains. The number of functional glomeruli in female and male Sprague Dawley rats falls significantly with aging, accompanied by the appearance of glomerulosclerosis (18,19). In contrast, female Fischer 344 rats and female and male WAG/Rij rats, who are free of age-dependent renal injury, exhibit a constant number of glomeruli up to 30 mo of age (Figure 1) (5,8,11,18). Furthermore, glomerular number is unchanged in ddY/SLC female mice between 30 and 90 wk, which corresponds to the mean survival of the colony (20).

Thus, it seems likely that the number of nephrons does not inevitably decrease with age in rodents, but is related to degenerative nephropathy.

Renal Lesions in Aging Rats

Renal lesions were reported in aging rats as soon as albino animals were used in research (15). Kidney disease, along with respiratory disease, is a major cause of early death in most colonies. The age-related renal lesions are complex and have been described as chronic nephritis, nephrosis, glomerulonephrosis, glomerulosclerosis, and most often as chronic progressive nephrosis, the term proposed by Gray (15). This is characterized by proteinuria associated with glomerular alterations, including enlargement of the whole glomerulus, thickening of the basement membrane, expansion of the mesangial domain, accumulation of extracellular matrix, fusion of the capillary tuft with Bowman's capsule, occlusion of glomerular capillaries, and ultimately destruction of the whole glomerulus. These lesions are frequently described as focal and segmental sclerosis. In addition, epithelial cell proliferation, atrophy, and retraction of foot processes have been reported, as well as proteinaceous casts in the tubule, protein droplets in glomeruli and tubular cells, tubulointerstitial fibrosis, cellular infiltration, calcium deposits in the renal parenchyma, and hydronephrosis (16,17,21-29). Medullary injury is present in some strains (e.g., Sabra, Fisher 344, and Sprague Dawley rats) with tubulointerstitial fibrosis and atrophy of the medullary thick ascending limb of the loop of Henle; when observed, these medullary changes precede damage to the glomerulus (30,31).
Vascular disease, other than to the glomerulus, is not common in aging rats. This pattern of chronic progressive nephropathy is very similar from one study to another; however, the onset and severity of these lesions depend on a number of factors, such as strain, gender, food intake, or environment.

Severe proteinuria occurs in aging rats that display substantial chronic progressive nephropathy, but some increases in protein excretion also occur in rats that are protected from kidney damage (32-35). Composition of the urinary proteins varies with age and gender; young male rats excrete a high proportion of low molecular weight proteins, but with aging the percentage of albumin and globulin increases (34,36,37). The percentage of glycated plasma albumin increases with age, and the preferential excretion of glycated albumin observed in the normal kidney is lost with aging, suggesting altered tubular handling (38). Proteinuria precedes the increased urinary excretion of enzymes that reflect tubular damage (39) and, as in man, microalbuminuria in the rat is an early predictor of chronic renal disease (32,40). Old Sprague Dawley male rats become heavily proteinuric due to increases in glomerular pore size/number, as well as loss of glomerular anionic barrier function (35), and disordered distribution of anionic sites has been observed in the thickened glomerular basement membrane of middle-aged rats (41).

Mechanisms of the Age-Dependent Glomerular Injury

Many factors have been examined to determine their role, if any, in the pathogenesis of age-dependent glomerulopathy. Glomerular capillary hypertension is a primary risk factor for development of progressive glomerulopathies and has been implicated in age-dependent glomerular damage (42). However, glomerular blood pressure does not invariably increase with aging (Figure 2), and structural injury may precede increased glomerular blood pressure, as evidenced in intact male Munich Wistar rats (10). Similarly, male rats of the MWF/ZTM strain exhibit accelerated kidney disease, yet glomerular blood pressure remains normal (43). Compared with Munich Wistar rats, glomerular injury develops much more rapidly in the Sprague Dawley rat, and in this strain increases in glomerular blood pressure have been reported at 13 to 18 mo of age (44,45), although not at 20 to 22 mo (19). In view of the extensive evidence that systemic hypertension worsens glomerular injury (4,33,42), it is likely that when glomerular blood pressure does increase it will exacerbate the underlying development of age-dependent glomerular damage (42,46).

Glomerular tuft hypertrophy is another risk factor for development of glomerular injury, via increased intramural tension leading to physical disruption of glomerular integrity (47-49). Glomerular volume does increase with aging, but injury and glomerular hypertrophy can be dissociated by castration of the male (10,50,51). Thus, whereas both glomerular hypertension and glomerular hypertrophy will cause glomerular injury, age-dependent glomerulopathy can develop in the absence of these hemodynamic risk factors, as is the case with the slowly evolving glomerular damage in the Munich Wistar rat (10).

Gender is an important determinant of the rate at which chronic progressive nephropathy appears. In many strains of rats, renal disease occurs earlier in life and to a more severe extent in males than in females. Ovarian hormones are widely recognized to be protective of the cardiovascular system but, surprisingly, ovariectomized females remain protected from age-dependent glomerular damage (10). In view of this finding, and because castration of the male is protective, it seems that the presence of the androgens, rather than the absence of ovarian hormones, promotes age-dependent glomerular damage, at least in rats (10). This greater susceptibility of the male to develop glomerular injury is not limited to aging, but includes other progressive glomerulopathies and also extends to other species, including man (52-57).

The causes of age-dependent glomerular damage have not yet been determined. Mesangial cell expansion and extracellular...
lar matrix accumulation play a primary pathogenic role in some forms of glomerular injury (58), and increased matrix accumulation is seen in most aging rats and precedes the appearance of focal sclerosis (59). In the Wistar rat, this is seen in aging males but not females and correlates with injury (60). In aging Fisher 344 rats, the major age-dependent change in renal extracellular matrix is interstitial fibrosis due mainly to accumulation of thrombospondin and fibronectin, which precedes glomerular sclerosis and tubular atrophy (31). On the other hand, age-related matrix expansion is greater in female than in male WAG/Rij rats, and is not associated with any glomerulosclerosis (14). In the Wistar/Lou strain, mesangial matrix and mesangial cellularity are barely modified with age, and no glomerular injury develops in very old rats of either gender (61). From these studies, it appears that mesangial expansion is not necessarily associated with glomerulosclerosis, but that the development of glomerulosclerosis is usually preceded by mesangial expansion, especially in males. The greater susceptibility of the old male of most strains to develop glomerular sclerosis may be related to androgens, which can increase synthesis of extracellular matrix material (54). In addition to increased synthesis, reduced rates of degradation will also cause accumulation of mesangial matrix products. As shown in Figure 3, activity of a glomerular metalloprotease responsible for degradation of mesangial matrix products is low in intact old male Munich Wistar rats that exhibit glomerular injury, but elevated in females and castrated rats of both sexes, which are protected from damage (62).

The accumulation of advanced glycation end products (AGE) within the glomeruli has also been proposed as a major cause of renal lesions in aging rats. AGE accumulate in the kidney of senescent rats, increase the synthesis of extracellular matrix, and expand the glomerular mesangium (63-69). Chronic administration of the AGE inhibitor aminoguanidine to female Sprague Dawley rats from 6 to 24 mo reduces the accumulation of AGE in the kidney and the incidence of glomerulosclerosis and nephron loss (18). Similarly, administration of aminoguanidine in male WAG/Rij rats from 24 to 30 mo reduces mesangial expansion without causing a change in the age-related renal hypertrophy (70). Because aminoguanidine has a number of other actions, however, including preferential inhibition of the inducible nitric oxide synthase (see below), the mechanism by which aminoguanidine protects the aging kidney from injury is still unclear.

Effect of Food Intake and Environment on the Development of Chronic Progressive Nephrosis

Some strains of rats develop chronic progressive nephrosis early in life, and by 24 mo exhibit severe renal disease. These strains are those in which body weight continues to increase after young adulthood, such as Sprague Dawley and Fisher 344 rats (6,12,13,16,17,25). Rats that remain small even when fed ad libitum, such as the Wistar, Long-Evans, or Brown Norway strains, are less susceptible to chronic progressive nephrosis (5,8,9,18,22). These observations led to the hypothesis that age-related renal lesions could be linked to overfeeding and that control of nutrition might protect the senescent kidney from disease.

The influence of nutrition on chronic progressive nephrosis has been documented in many studies since the pioneering experiments of Saxton and Kimball in 1941 (71). These investigators found that a low protein diet was protective and that...
restriction of food was the most effective method of preventing chronic progressive nephrosis. These results have been confirmed and extended over the past 50 years by several authors, as reviewed recently (72). Dietary restriction consists of allowing access to approximately 60 to 70% of the ad libitum intake or, alternatively, periodic removal of food. Food restriction limits the obesity frequently reported in aging rats, with reductions in body weight up to approximately 50%. The most impressive effect is the increase in survival, since mean life span is 25 to 50% longer in food-restricted rats. This increase in survival is associated with a reduced incidence of diseases, including chronic progressive nephropathy (13,25,73-77).

The striking effect of food restriction on the prevention of renal disease in aging rats prompted investigators to test whether this was due to restriction of one element of the diet or to caloric restriction per se. Restriction of dietary salt has little effect on the progression of chronic progressive nephrosis (75,76). Restriction of dietary fat and dietary substitution of polyunsaturated fatty acids are protective in various models of underlying renal disease (72), and a deranged plasma lipid profile may contribute to age-dependent glomerulosclerosis in the female analbuminemic rat (78). However, there is little direct evidence that lipid restriction protects against kidney aging (75,76). In contrast, reducing the animal protein content of the diet delays the appearance of renal lesions. Similarly, replacement of casein by liver or vegetable proteins is protective, suggesting that the source of proteins may be important (71,79,80). Restriction of calories, however, is more powerful than any other dietary manipulation in preserving renal structure in senescent rodents. Not only does this retard the onset of chronic progressive nephrosis, but it completely prevents the development of renal failure in the oldest animals. (13,21,23,71,72,76,79-85). The conclusion from these studies is that the total amount of food ingested by the animal during its life is a determinant of the extent of renal damage. The mechanism of the beneficial effect of food restriction is not certain, although reduced generation of free radicals and protein glycation could be involved (76,86). Increased oxidants and formation of AGE, both of which accumulate in aging, have indeed been implicated in glomerular injury, possibly by enhancing extracellular matrix expression (87,88).

Environment may also play a role in the development of chronic progressive nephrosis. Maintenance of animals in a pathogen-free environment throughout their lives lowers the incidence of renal disease in ad libitum-fed animals, although this is not as efficient as food restriction (26,89). Overall, these experiments indicate that the severe chronic progressive nephrosis described in old rats is related more to disease than to true aging processes. It is clear that renal disease in aging rodents is not an obligatory event. This analysis prompted investigators to combine conditions known to minimize renal failure in their development of experimental models of kidney aging free of renal disease. Strains of rats were selected that remained lean even when fed ad libitum and that were resistant to chronic progressive nephrosis. The rats were maintained under pathogen-free conditions and fed a diet in which animal proteins were substituted with vegetable and fish proteins and that contained a moderate amount of calories. By combining these optimal conditions, it has been possible to produce extremely old rats that are free of chronic progressive nephrosis (9). This does not mean that the kidney escapes the processes of aging, but it shows that the pathologic changes are not inevitable.

Renal and Glomerular Hemodynamics

As in man, the impact of aging on GFR is quite variable in the rat, and depends on strain, gender, environmental conditions including diet, and importantly, on whether GFR is factored for body or kidney weight. Rats that become obese with age and exhibit substantial chronic progressive nephrosis, such as the male Sprague Dawley, show increases in absolute GFR up to old age (approximately 18 mo) and then GFR returns to the young adult value as senescence approaches (90). When factored for the increase in body weight or kidney weight, GFR remains unchanged up to middle age, and then declines markedly with senescence. This differs from the findings in WAG/Rij female rats, which do not increase body weight after maturation (although the kidney undergoes hypertrophy) and do not exhibit chronic progressive nephrosis. In these rats, there is little change at any age in the absolute values of filtration rate or when GFR is factored for body weight, although GFR does fall at senescence when factored for kidney weight due to renal hypertrophy (5). It is difficult to know which is the most appropriate way of expressing GFR, and we recommend that absolute values of kidney and body weights should be published, in addition to any factoring.

Sexual dimorphism in age-related changes in GFR is evident from comparison studies in the Munich Wistar and WAG/Rij rats. In the Munich Wistar strain, GFR is higher in young adult males than in females, and this gender difference gradually disappears with advancing age due to the more rapid reduction in GFR seen in the male rat (10,91). In the WAG/Rij strain, GFR measured in conscious animals is comparable to or even higher in adult females than in males when factored to kidney weight. At the end of life, this GFR/kidney weight is comparably decreased in both the male and female. However, due to the pronounced renal hypertrophy observed in the female of this strain, the absolute values of GFR decrease in the aging male but not in the female (5,8).

Several micropuncture studies have measured single nephron GFR (SNGFR) and its determinants in the aging rat. The distribution and average value of SNGFR increase with age in male Sprague Dawley rats that also develop substantial injury, and this pattern is consistent with a compensatory response to nephron loss (19,46). In contrast, female WAG/Rij rats that are free of kidney disease show no change in distribution or mean value of SNGFR up to 30 mo of age (Figure 4). In the male Munich Wistar rat, absolute values of SNGFR and GFR are similar at 8 and 19 mo of age, although when factored for the increase in kidney weight, these variables decrease. Both afferent and efferent arteriolar resistances increase by 19 mo, so that glomerular blood pressure remains unchanged (10). In female Munich Wistar rats, GFR and SNGFR are constant with age, even when factored for kidney weight. The kidney is relatively vasoconstricted in the young adult female, tends to dilate with age, and at 19 mo there is no difference in afferent
and efferent arteriolar resistances between the sexes. As shown in Figure 2, glomerular blood pressure remains unchanged in intact female rats as well as males and is also constant in castrated rats of both sexes (10). The glomerular capillary ultrafiltration coefficient (K_f) is also relatively constant with advancing age in both sexes, despite progressive increases in glomerular tuft volume, which are particularly pronounced in the male of this strain (10). However, as discussed above, an increased glomerular volume does not necessarily translate into increased filtration surface area (14).

Control of the Renal Vascular Resistance

Renin-Angiotensin System

Substantial reductions in plasma renin activity (PRA) have been reported in a number of species including man, and possible clinical consequences of this reduction in the elderly have been recently reviewed (92). In the rat, a decline in PRA occurs in both sexes (93–97) in association with a fall in renal renin content (93,97,98) and a reduction in renin synthesis in individual juxtагlomerular apparatuses (94). A fall in PRA precedes glomerulosclerosis in susceptible animals and also occurs in rat strains protected from chronic progressive nephrosis (93,96–98), although severe glomerular pathology is associated with the lowest values of PRA (96). This unusual association of reduced PRA with increasing kidney damage may reflect loss of individual juxtагlomerular apparatuses secondary to loss of nephrons during injury (96).

A number of stimuli influence renin release and could be altered in aging. Of these, neither renal perfusion pressure nor macula densa delivery of solute is apparently involved, because substantial decreases occur in PRA in the absence of either increased blood pressure or alterations in the fluid composition in the distal tubules of senescent rats (93,99). Atrial natriuretic peptide (ANP) is a potent inhibitor of renin release via increased cGMP. Because ANP levels increase with age in association with cardiac hypertrophy (97), this may provide a mechanism for reduced PRA. Circulating catecholamines and renal nerve activity are important stimuli to renin secretion via a beta-adrenergic effect, and beta-adrenergic responsivity is markedly blunted with age (100). This may also provide an explanation for the fall in PRA, because under basal, unstressed conditions, PRA is similar in young and old Sprague Dawley male rats and shows a blunted response to stress in old rats (101,102). In contrast, PRA in unstressed female WAG/Rij rats indicates an age-related decrease in PRA comparable to that seen when blood samples are obtained by decapitation, suggesting that the fall in PRA must be multifactorial. Stimulation of renin release in response to angiotensin-converting enzyme inhibition (ACEI) and low sodium diet is also reduced in old rats (95,101), suggesting a global loss of responsivity to the normal stimuli.

Several studies have investigated whether the age-related fall in PRA is due to an alteration in renin gene transcription, translation, maturation, or storage of the protein. Middle-aged male Sprague Dawley rats exhibit a fall in renal renin mRNA, although PRA is not reduced (103). In contrast, renin mRNA is unchanged in male c57BL/6J mice up to 29 mo, although a fall occurs between 29 and 37 mo (104). Unfortunately, no values were reported for PRA or renal renin content and no renal histopathology was presented in this study. WAG/Rij female rats (98) do not show a change in intrarenal renin mRNA up to 30 mo, despite a 50% reduction in intrarenal renin activity (Figure 5). This suggests that transcription of the renin gene is
unchanged with age and that the fall in renin activity is linked to a posttranscriptional alteration. This idea is supported further by the increase in mRNA content of the kidney after 4 d of salt restriction in adult and senescent rats (98). It confirms that transcription of the renin gene is maintained in the aging kidney (Figure 5), whereas 6 d of salt restriction do not increase PRA in senescent rats, indicating an impaired renin release with age despite the increase in renin mRNA (95).

Other components of the renin-angiotensin system are also affected by age. Plasma angiotensinogen concentration decreased slightly in old rats (93), but this may be counterbalanced by increased local synthesis of angiotensinogen in vascular smooth muscle cells (105) and the heart (106). The activity of the plasma-soluble form of angiotensin I-converting enzyme was unaffected by age in female WAG/Rij rats and male Fisher 344 rats, whereas in male WAG/Rij rats a moderate decrease occurred by 30 mo (93,107,108). These small changes in converting enzyme activity and angiotensinogen synthesis with age are trivial and indicate that the reduction in renin activity is the main rate-limiting step responsible for production of angiotensin II in senescent animals.

When reported, plasma values of angiotensin II (AngII) generally change in parallel to renin. In the unstressed basal state when PRA is similar in old and young Sprague Dawley rats, values for plasma AngII are also similar (101), despite an increased metabolic clearance rate in the old rat. An increased metabolic clearance rate, together with unchanged plasma AngII, suggests that overall AngII production must also be increased to keep pace with the accelerated rate of AngII breakdown. In WAG/Rij rats in which an age-related decrease in plasma renin is found in unstressed conditions, plasma AngII falls in proportion (98). The AngII receptor involved in control of renal hemodynamic and tubular transport is the AT1 receptor, and this receptor is usually upregulated by low plasma levels or local concentrations of AngII. Despite the reported decrease in PRA and AngII in aging male Wistar rats, AT1 mRNA expression is much lower in 24-mo-old versus 3-mo-old rats (109) and correlates well with the decreased maximal binding of AngII in senescent animals.

The functional impact of these changes in the renin/AngII system have been investigated by several groups with variable findings. Administered AngII is reportedly more sensitive in reducing renal plasma flow in late middle-aged Sprague Dawley rats (110). In contrast, AngII has similar renal vasoconstrictor actions in young and old conscious male Sprague Dawley rats, and the responsiveness of the afferent and efferent arterioles is also similar, although the sensitivity of K_t to AngII increases with advancing age (111,112). The renal vascular responsiveness to acute ACEI or AngII receptor blockade is enhanced in old male Sprague Dawley rats (111), not altered in the middle-aged male Sprague Dawley rat (110), and reduced in the aged female WAG/Rij rat (93). Chronic administration of converting enzyme inhibition in the normal rat may produce renal vasodilation, but this is controversial (107,113). Thus, there is no consensus on whether endogenous intrarenal AngII activity is enhanced with advancing age, and this may vary with gender, experimental preparation, and strain-dependent susceptibility to renal disease.

The role of the renin-angiotensin system in the development of age-dependent kidney damage has been assessed by studying the effect of chronic ACEI on aging processes. Treatment of normotensive mice from birth to 24 mo results in increased survival, reduced cardiac mass, and a decrease in the percentage of glomerulosclerosis (114,115). Chronic ACEI protects against glomerulosclerosis and reduced proteinuria, and lowers blood pressure in aging male Munich-Wistar rats treated from 3 to 30 mo of age (113). Treatment also prevents the increase in glomerular blood pressure and reduction in K_t while not altering the age-dependent increase in glomerular size and maintained SNGFR. Lifetime ACEI in the male WAG/Rij rat also lowers blood pressure, renal vascular resistance, proteinuria, and expansion of the mesangial matrix, without influenc-
ing glomerular volume, renal blood flow, or GFR (107). Even the parameters whose absolute values are reduced by ACEI, such as renal vascular resistance, still increase with age in parallel to the control groups, suggesting that chronic ACEI does not affect the aging processes per se, but simply postpones the consequences.

Sympathetic Nervous System

Alterations occur in the autonomic control of the cardiovascular system with advancing age, including a blunted responsiveness to alpha 2- and beta-adrenoceptors, and blunting of the arterial baroreflex (100). The possible implications of the blunted beta-adrenoceptor responses, in the context of control of renin release (102), were discussed above. Impairment of the arterial baroreflex leads to increased renal sympathetic nerve activity, which increases both renal vascular resistance and the sensitivity of the aging kidney to vasoconstrictor agents (116). One functional consequence is that increases in renal nerve activity appear to play a role in the blunted pressure natriuresis that occurs in the kidney of the old rat (117) and may contribute to age-related increases in salt-sensitive hypertension.

Atrial Natriuretic Peptide

Vasodilation induced by ANP is attenuated by aging in several vascular beds, including the renal arteries (118,119). This may be due to accelerated degradation of cGMP (the ANP second messenger) by upregulated phosphodiesterases in aging blood vessels (119). The renal vascular action of administered ANP in young animals depends on the preexisting level of vascular tone, because in stressed or precontracted renal vessels ANP is vasodilatory, whereas in the relaxed basal state, ANP causes efferent arteriole vasoconstriction (120). In the conscious rat, a small depressor dose of ANP has no effect on renal hemodynamics but does exhibit a potent and selective natriuretic effect on the kidney of the old rat (121), perhaps because of a decreased renal clearance of ANP (122) secondary to diminished activity of the proximal tubular ANP-degrading enzyme (123).

Endothelial Factors

Endothelin (ET) is an extremely potent vasoconstrictor synthesized by vascular endothelial cells that is normally present in extremely low concentrations in the plasma. There is little information about the activity of ET in the aging kidney, although infusion of ET produces an exaggerated fall in renal plasma flow in late middle-aged Sprague Dawley rats (110). Inhibition of endogenous ET with the mixed receptor antagonist Bosentan has no renal hemodynamic effect in young or old conscious male Sprague Dawley rats (124).

It is well established that in aging there is a widespread reduction in prostacyclin (PGI2) synthesis throughout the vascular endothelium, leading to a reduction in the PGI2/TXA2 ratio, a maladaptation that is atherogenic (125,126). This occurs in the kidney of the old rat as reflected by an elevation of the ratio of thromboxane to prostacyclin in the urine, glomeruli, and inner and outer medulla (127). This shift away from production of the vasodilatory prostaglandins puts the older kidney at risk in any vasoconstricted state and may be responsible, in part, for the sensitivity of the kidney of the old rat to ischemic and toxic insults (33,128-131).

Nitric oxide (NO) plays a major physiologic role in the maintenance of peripheral and renal vascular tone (132,133). With aging, the peripheral vasculature has a diminished ability to produce NO (134,135) and may also exhibit an impaired vascular response to administered nitrodiolators (100). The 24-h urinary excretion of NO3 + NO2 (the stable oxidation products of NO) are decreased in the old rat, supporting the notion that total NO production falls with age (136-138). This could reflect a fall in NO synthesis in the vasculature, perhaps due to reduced NO synthase (NOS) (139), reduced substrate (l-arginine) availability, although this point is controversial (136,137), and/or increased breakdown of NO by oxidants that are activated in aging (140,141). Generalized NO deficiency may also contribute to age-dependent kidney damage (142). Within the kidney vasculature, there is a reduction in the quantity of neuronal NOS with age (142), findings consistent with reduced intrarenal NO generation. However, functional studies suggest that NO is still very important in the control of renal vascular tone, because both acute and chronic NO inhibition causes exaggerated renal vasoconstriction in old rats (52,116,139). This may mean that more NO is being produced in the kidney of the old rat or, alternatively, that the NO that is present has an increased role as a counter-regulatory influence to the activated intrarenal vasoconstrictor systems.

The renal vasodilatory response to acetylcholine (Ach) is not blunted in old conscious rats (138), although in vitro the dose-response curve to Ach changes so that the isolated perfused kidney of the aged rat vasoconstricts to high levels of Ach (143). The renal vasodilatory response to amino acid infusion and protein feeding is mediated by both prostaglandins and NO (144,145), although the available data in aging are conflicting. Administration of the NO substrate l-arginine produces an unblunted renal vasodilatory response in old rats (138). In contrast, the renal vasodilatory response to infusion of glycine and to protein intake in the food is blunted with advancing age in the Sprague Dawley and WAG/Rij rat (34,90). Interpretation of Ach and amino acid responses is complicated because these agents use other vasodilatory pathways in addition to NO, and the contribution of these pathways may vary between species and under different experimental conditions.

There is also the issue of NO originating from constitutive NOS ("good NO" involved in controlled vasodilatation, anti-platelet aggregation, etc.) versus NO originating from inducible NOS (iNOS; "bad NO," which is cytotoxic and causes uncontrolled vasodilatation). Senescent mice exhibit an enhanced macrophage iNOS response with excessive NO generation in response to immunologic stimulation, which increases mortality (146,147). Aminoguanidine is an iNOS inhibitor, and some of the beneficial effects on the kidney of long-term treatment with this drug may reflect iNOS inhibition, as well as inhibition of AGE (18). In addition to their vasoactive actions, many of the hormones and cytokines discussed above can influence growth of glomerular mesangial cells and extracellular matrix production (148-151). Alterations in the local
renal activity of these systems probably contribute to the age-
dependent expansion of the glomerular and tubulointerstitial
extracellular matrix, discussed above.

Summary and Conclusions

The rat provides a useful experimental model to study of the
mechanisms of kidney aging. As in man, a wide diversity in the
renal response to aging occurs in the rat, and because of this
variability it is important to always specify experimental condi-
tions, i.e., strain, gender, diet, and environment. Most aging rats
display chronic progressive nephrosis, although the rate at which
injury develops is highly variable. There are a number of known
risk factors that potentiate injury, including male gender, genetic
background, obesity, high protein/high calorie diet, and environ-
mental exposure to pathogens. The causes of age-dependent glo-
merulopathy are multifatorial and include an imbalance between
synthesis and degradation of extracellular matrix products, as well
as hemodynamic alterations. Of importance, this damage is not
inevitable and can be dissociated from normal kidney aging when
optimal conditions for successful aging are provided. There is
complex and sometimes contradictory information on vasoactive
factors. It is, likely, however, that the activity of intrarenal AngII
is somehow upregulated in the aging kidney of some, but not all,
strains, and α1-dependent renal nerve activity may also be en-
hanced. The endothelial vasodilatory prostaglandins and NO exert
an increasingly important role in the maintenance of renal perfu-
sion with advancing age, although their production may be di-
minished. In the future, we anticipate that comparison of rats with
different genetic backgrounds will help to dissociate true aging
from disease.

References

1122, 1996
2. Chou SY, Lindeman RD: Structural and functional changes in
the aging kidney. In: The Principles and Practice of Nephrology,
2nd Ed., edited by Jacobson HR, Striker GE, Klahr S, St. Louis,
Mosby, 1995, pp 510–514
3. Baylis C, Schmidt RJ: The aging glomerulus. Semin Nephrol 16:
265–276, 1996
4. Levi M, Rowe JW: Renal function and dysfunction in aging. In:
The Kidney: Physiology and Pathophysiology, edited by Seldin
DW, Giebisch G, New York, Raven, 1992, pp 3433–3456
5. Corman B, Michel JB: Glomerular filtration, renal blood flow,
and solute excretion in conscious aging rats. Am J Physiol 253:
R555–R560, 1987
6. Corman B, Owen R: Normal development, growth, and aging of
the kidney. In: Pathobiology of the Aging Rats, edited by Mohr
U, Dungworth DL, Capen CC, Washington, DC, ILSI Press,
1992, pp 195–209
8. Heudes D, Michel O, Chevalier J, Bariety J, Zimmerman A,
Corman B: Effect of chronic angiotensin I converting enzyme
inhibition on the aging processes. I. Kidney structure and func-
9. Dodane V, Chevalier J, Bariety J, Pratz J, Corman B: Longitu-
dinal study of solute excretion and glomerular ultrastructure in an
experimental model of aging rats free of kidney disease. Lab
10. Baylis C: Age-dependent glomerular damage in the rat: Disso-
ciation between glomerular injury and both glomerular hyperten-
sion and hypertrophy. Male gender as a primary risk factor.
filtration, and solute excretion in aging rat kidney. Am J Physiol
248: R282–287, 1985
and function in Sprague-Dawley rats. Toxicol Pathol 14: 158–
167, 1986
of SPF Fischer 344 male rats fed ad libitum or restricted diets:
Longevity, growth, lean body mass, and disease. J Gerontol 37:
130–141, 1982
14. Francois V, Heudes D, Bariety J, Bruneval P, Corman B: Glo-
merular capillary network of cortical nephron is reduced in male
15. Gray J: Chronic progressive nephrosis in the albino rats. CRC
Crit Rev Toxicol 5: 115–143, 1977
16. Gray J, Weaver R, Purmalis A: Ultrastructural observations of
chronic progressive nephrosis in the Sprague-Dawley rat. Vet
Pathol 11: 153–164, 1974
17. Bolton W, Sturgill B: Ultrastructure of the aging kidney. In:
Vlassara H: Prevention of cardiovascular and renal pathology of
aging by the advanced glycation inhibitor aminoguanidine. Proc
Nat Acad Sci USA 93: 3902–3907, 1996
19. Reckelhoff JF, Samsell L, Racusen L, Dey R, Baylis C: The
effect of aging on glomerular hemodynamics in the Sprague-
20. Sato F, Tsuchihashi T, Kawashima N: Age changes in number
and size of the murine renal glomeruli. Exp Gerontol 10: 325–
331, 1975
21. Bertani T, Zoca C, Abbate M, Rossini M, Remuzzi G: Age-
related nephropathy and proteinuria in rats with intact kidneys
exposed to diets with different protein content. Lab Invest 60:
196–204, 1989
22. Bureck J: Pathology of Aging Rats, Boca Raton, FL, CRC Press,
1979
23. Everitt A, Porter B, Wyndham J: Effect of caloric intake and
dietary composition on the development of proteinuria, age asso-
ciated renal disease and longevity in the male rats. Gerontol-
ogy 28: 168–173, 1982
24. Kreisberg J, Karnovsky M: Focal glomerular sclerosis in the
25. Maeda H, Gleiser C, Masoro E, Murata I, McMahan C, Yu B:
Nutritional influences on aging of Fischer 344 rats. II. Pathology.
J Gerontol 40: 671–688, 1985
27. Short B, Goldstein R: Nonneoplastic lesions in the kidney. In:
Pathobiology of the Aging Rats, edited by Mohr U, Dungworth
28. Walker F: The origin, turnover and removal of glomerular base-
29. Win Win Y, Takahashi S, Kawashima S: Age-related changes in
sex difference in the ultrastructure of renal glomerulus in

706 Journal of the American Society of Nephrology

69. Corman B, Duriez M, Poitevin P, Heudes D, Bruneval P, Tedgui A, Levy BI: Aminoguanidine prevents age-related arterial stiff-

