














mum level of fluorescence we used 10 �M ionomycin (a calcium iono-

phore), and for the control of the minimum level of fluorescence, 5 mM

EGTA was used.

Flow Cytometry Analysis of Filamentous
Actin (F-Actin).
To investigate the possible effect of TGF�-1 and NMDA on filamen-

tous actin in HK-2 cells, flow cytometry analysis was used. After 24

hours of incubation in described treatments,

cells were washed in PBS and briefly exposed to

Trypsin-EDTA (0.05%). Trypsinization was

stopped by dilution with 2% FBS/DMEM/F12,

and suspended cells were centrifuged at 2000

rpm for 5 minutes. Cell pellets were washed in

PBS and centrifuged at 2000 rpm for 5 min-

utes. HK-2 were fixed in 4% paraformalde-

hyde/PBS for 10 minutes, washed in PBS, and

incubated with 0.1% Triton X-100/PBS for 5

minutes. After centrifugation at 2000 rpm for

5 minutes, cells were incubated with 1% BSA/

PBS for 30 minutes. Cells were stained with Alexa

Fluor 488 phalloidin (Molecular Probes; dilu-

tion 1/150 in 1% BSA/PBS) for 1 hour in the

dark. Ten thousand HK-2 cells were aspirated

into a flow cytometer (Epics XL flow cytome-

ter). The resulting histogram is a measure of

phalloidin staining per cell, which is indica-

tive of the amount of F-actin structure to

which the fluorescence phallotoxin is bound.

In Vitro Wound Migration Assay.
HK-2 cells were grown until 100% of confluence

and were growth-arrested in serum-free me-

dium for 24 hours. Cell monolayer was injured

in a linear fashion with a sterile 200-�l pipette

tip and gently washed with PBS. Treatments

were added, and the closure of the denuded area

was monitored using a LEICA Microsystems

DFC480 inverted microscope. Digital images

were obtained at 0, 24, and 48 hours (four im-

ages per treatment). The width of the wounds

was measured using LEICA Quantity Software

IM50 Image Manager V.4.0, and the progres-

sion of migration was computed by substracting

the width of the wound at 24 or 48 hours from

the initial width of the wound (at 0 hours). The

experiments were repeated three times, and ev-

ery treatment group was done in triplicate.

Transwell Migration Assay.
Transwell inserts (8-�m porosity; Falcon, BD

Labware) were coated with 20 �l of growth fac-

tor–free Matrigel (BD Bioscience) and incu-

bated at 37°C for 30 minutes. After serum depri-

vation, HK-2 cells were seeded (5 � 104) in the top well chambers in

200 �l of DMEM/F12 with 0% FBS. The bottom compartments of

transwell chambers were filled with 500 �l of DMEM/F12 with

10% FBS. Media in the top and bottom chambers were supple-

mented with the same concentrations of corresponding treat-

ments. After 24 hours, media were removed; cells were washed

with PBS and fixed with 4% paraformaldehyde for 10 minutes and

0.1% Triton X-100 for 5 minutes. Cells that remained on the upper

Figure 6. NMDAR activation inhibits basal and TGF-b1-stimulated PTEC migration in
vitro. (A–H) Wound healing assay. Contrast phase micrographs of HK-2 cells migrating
into the denuded area of the scratch wound at various times after monolayer wound-
ing. One representative experiment is shown to illustrate the wound closure after 48
hours in control conditions (B), TGF-�1 (D), TGF-�1 � NMDA (F), and NMDA (H)
compared with the corresponding wounds at the point 0 hours for the control (A),
TGF-�1 (C), TGF-�1 � NMDA (E), and NMDA (G). (A–H) Magnification: �4. (I) Transwell
migration assay. Representative photos show parts of transwell inserts for control,
TGF-�1, TGF-�1 � NMDA, and NMDA treated group of cells after 24 hours of
incubation. Nuclei were stained with Hoechst. Magnification: �20. Quantification of
cell migration in wound healing assay after 24 and 48 hours (J) and transwell migration
assay after 24 hours (K). Data are presented as means � SEM (wound-healing assay) or
percentage of control (means values � SEM; transwell migration assay) of three
independent experiments assayed in triplicate for each time point and condition. (J)
*P � 0.05 versus control at both time points and #P � 0.05 versus TGF-�1 at both time
points. (K) *P � 0.05 versus control; #P � 0.05 versus TGF-�1.
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side of the filter membranes were gently removed with a cotton

swab. Membranes were cut out from the inserts with a scalpel

blade, and the cells from the bottom side of the membrane were

stained with 1% Hoechst (Sigma) (cell nuclei) for 10 minutes at

room temperature. Membranes were mounted on microscope

slides using ProLong antifade reagent (Molecular Probes), with the

lower surface facing up. Cells/nuclei were counted and analyzed

using a LEICA Microsystems DFC480 fluorescence microscope.

Fifty random fields were examined, and the results were plotted as

the percentage of control. The experiments

were repeated three times, and every treat-

ment group was performed in triplicate.

Live Cell Microscopy.
See Supplementary Material.

Analysis of Cell Migration in Time-Lapse
Movies.
See Supplementary Material.

Protein Nuclear Extraction.
HK-2 cells were serum deprived for 24 hours

and subsequently incubated in serum-free me-

dium (control), TGF-�1, and TGF-�1 �

NMDA for 120 minutes. After incubation, cells

were washed with cold PBS. Nuclear protein

fraction was extracted using the NE-PER Nu-

clear and Cytoplasmic Extraction KIT (Pierce).

Expression of Fusion Protein GST-RBD Raf1
in Escherichia coli.
See Supplementary Material.

Determination of Ras Activation.
Ras activation was assessed by specific binding

of Ras-GTP (activated form) to the Ras binding

domain of Raf-1. For determination of Ras-

GTP, HK-2 cells were treated separately with se-

rum-free medium (control), TGF-�1, TGF-�1

� NMDA, and TGF-�1 � TG. After treatments,

cells were incubated with magnesium contain-

ing lysis buffer (25 mM HEPES [pH 7.5], 150

mM NaCl, 1% NP-40, 0.25% Na-deoxycholate,

10% glycerol, 25 mM NaF, 10 mM MgCl2, 1 mM

EDTA, 1 mM Na3VO4, 2 mM PMSF, and pro-

tease inhibitor cocktail) for 10 minutes at 4°C.

Cells were cold centrifuged for 10 minutes at

10.000 rpm, and supernatant was collected.

After measurement of protein concentra-

tions, 10 �g of lysate proteins was used in the

detection of total Ras after mixing with Laem-

mli sample buffer and boiling for 5 minutes.

Seventy micrograms of lysate proteins was in-

cubated with 2 �g of GST-RBD precoupled

with glutathione-Sepharose at 4°C for 2

hours. The sepharose conjugates were recov-

ered by short centrifugation, washed two times with magnesium

containing lysis buffer, resuspended in Laemmli sample buffer,

and boiled for 5 minutes. Sample supernatants were subjected to

15% SDS-PAGE and used in Western blot detection of Ras-GTP.

Lentiviral Production and Infection of HK-2.
The shRNA vector was constructed by annealing complementary

60-mer oligonucleotides containing the 21-nucleotide target se-

Figure 7. NMDAR activation reduced phosphorylation of Erk and Akt and activation of
Ras induced by TGF-�1 treatment. HK-2 cells were incubated in serum-free medium
(control), TGF-�1, or TGF-�1 � NMDA for 30 and 60 (pErk, pAkt) and 10 minutes
(Ras-GTP). Representative Western blots (A, C, and E) and quantitative analysis (B, D,
and F) show alterations in protein expression induced by TGF-�1 in HK-2 cells. NMDA
treatment reduced phosphorylation of Akt (A and B) and Erk (C and D) induced by
TGF-�1 in HK-2 cells. After incubation with different treatments, whole cell lysates were
immunoblotted with either phospho-Akt or total-Akt and phospho-Erk or total-Erk. (E
and F) NMDA reduced TGF-�1–induced activation of Ras. Total cell extracts were pre-
pared and incubated with GST-RBD to measure the amount of Ras-GTP (top panel).
Aliquots of total cell lysates (10 �g) were run in parallel for detection of total Ras protein
(bottom panel). (B, D, and F) *P � 0.05 versus control, #P � 0.05 versus TGF-�1.
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quence in both the sense and antisense orientation separated by a

9-nt spacer. The 21-mer sequence to NMDAR1 was CGCCAAC-

TACAGCATCATGAA and is predicted to be specific only for

NMDAR1 as determined by BLAST database searches. Oligonucle-

otides to produce shRNA were annealed in buffer (150 mM NaCl;

50 mM Tris, pH 7.6) and cloned into the AgeI-BamHI site of

Figure 8. NMDA treatment reduced �-SMA and collagen I expression in the obstructed mouse kidney. (A and B) Real-time PCR analysis
shows downregulation of �-SMA and collagen I mRNA expression in obstructed mouse kidney after NMDA treatment in different time
points (5 and 15 days). Relative mRNA levels were calculated and expressed as fold induction over contralateral controls (value � 1.0)
after normalizing with GAPDH. *P � 0.05 versus control; #P � 0.05 versus UUO. (C) Quantification of collagen content after Sirius red
staining. Data are means � SEM of seven animals per group (n � 7) *P � 0.05 versus control; #P � 0.05 versus UUO. (D and E) Western
blot shows increased expression of �-SMA in the obstructed kidneys at 5 and 15 days after UUO and inhibition of �-SMA in the UUO � NMDA
group of mice. Whole kidney lysates were processed for protein analysis at days 5 (D and F) and 15 (E and F) after UUO and were
immunoblotted with antibodies against �-SMA and tubulin, respectively. (F) *P � 0.05 versus control; #P � 0.05 versus UUO.
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lentiviral vector for RNA interference-mediated gene silencing un-

der the control of U6 promoter for expression of short hairpin

shRNAs and the Venus variant of GFP under the control of SV40

promoter for monitoring transduction efficiency. To produce in-

fective lentiviral particles, 293T cells were co-transfected by the

polyethylenimine method with the virion packaging elements

(VSV-G and �8.9) and the shRNA-producing vector (FSVsi-

NMDAR1 or FSVsi as a control). 293T cells were allowed to pro-

duce lentiviral particles for 3 days in DMEM (Life Technologies)

supplemented with 10% FBS, sodium pyruvate, nonessential

amino acid, penicillin, and streptomycin. Culture medium was

collected and centrifuged at 3000 rpm for 10 minutes; supernatant

was collected and filtered using Sartorius filters at 4000 rpm for 30

minutes. Filtered supernatant was added to the growing culture of

HK-2 cells and incubated overnight. Next day, fresh medium was

replaced, and the cells were grown for an additional 3 to 4 days to

allow endogenous gene knockdown. Western blot and real-time

PCR were performed to check for gene knockdown.

In Vivo Study
This study was performed on female mice

(B6CBJ) weighing 18 to 22 g, obtained from

Charles River (Barcelona, Spain). Mice were

housed and maintained in a barrier facility, and

pathogen-free procedures were used in all

mouse rooms. Animals were kept in a 12-hour

light/dark cycle at 22°C with ad libitum access to

food and water. Mice were randomly assigned to

two groups with seven mice each. Under gen-

eral anesthesia, mice were subjected to UUO

by double-ligating the left ureter using 2-0 silk

after a lateral abdominal incision. The UUO

� NMDA mice received NMDA treatment 3

days before and every day after the surgery (20

mg/kg body weight, intraperitoneally). UUO

mice received injections of the same volume

of the vehicle (0.9% saline solution). Five and

15 days after the surgery, animals from each

group were killed under general anesthesia.

One part of the obstructed kidney was fixed in

4% paraformaldehyde/PBS for histologic exami-

nations after embedding in paraffin. Another part

was frozen and kept at �80°C for protein and

mRNA extractions. All procedures performed in

this study followed the National Institute of

Health Guide for the Care and Use of Laboratory

Animals.

Semiquantitative PCR and Real-Time PCR.
See Supplementary Material.

Western Blot Analysis.
See Supplementary Material.

Immunofluorescence Microscopy.
See Supplementary Material.

Morphometric Analysis of Interstitial Fibrosis and IHC.
See Supplementary Material.

Statistical Analysis
Statistical significance was evaluated by t test or by one-way ANOVA

followed by a Tukey post hoc test (SPSS, Chicago, IL), as appropriate.

Values of P � 0.05 were considered statistically significant. All data

examined are expressed as mean � SEM.
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Figure 9. Activation of NMDAR in the mouse kidney attenuates renal fibrosis induced
by UUO; immunohistochemical staining for E-cadherin, �-SMA, FSP1, and collagen I.
Administration of NMDA reduced the loss of E-cadherin (A) and decreased �-SMA (B),
FSP1 (C), and collagen I (D) expression in the obstructed mouse kidney 15 days after
UUO. Kidney sections were stained with antibodies against E-cadherin (A), �-SMA (B),
FSP1 (C), and with Masson-Trichrome staining (D). Representative photomicrographs
of kidney sections from three investigated groups of mice are presented. (A–C)
Original magnification: �20. (D) Scale bar, 20 �m.
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