Conventional and Genetic Evidence on the Association between Adiposity and CKD

Pengfei Zhu,1,2 William G. Herrington,1,2,3 Richard Haynes,1,2,3 Jonathan Emberson,1,2,4 Martin J. Landray,1,2,4,5,6 Cathie L.M. Sudlow,7 Mark Woodward,8,9,10 Colin Baigent,1,2 Sarah Lewington,2 and Natalie Staplin1,2,4

Due to the number of contributing authors, the affiliations are listed at the end of this article.

ABSTRACT

Background The size of any causal contribution of central and general adiposity to CKD risk and the underlying mechanism of mediation are unknown.

Methods Data from 281,228 UK Biobank participants were used to estimate the relevance of waist-to-hip ratio and body mass index (BMI) to CKD prevalence. Conventional approaches used logistic regression. Genetic analyses used Mendelian randomization (MR) and data from 394 waist-to-hip ratio and 773 BMI-associated loci. Models assessed the role of known mediators (diabetes mellitus and BP) by adjusting for measured values (conventional analyses) or genetic associations of the selected loci (multivariable MR).

Results Evidence of CKD was found in 18,034 (6.4%) participants. Each 0.06 higher measured waist-to-hip ratio and each 5-kg/m² increase in BMI were associated with 69% (odds ratio, 1.69; 95% CI, 1.64 to 1.74) and 58% (1.58; 1.55 to 1.62) higher odds of CKD, respectively. In analogous MR analyses, each 0.06–genetically-predicted higher waist-to-hip ratio was associated with a 29% (1.29; 1.20 to 1.38) increased odds of CKD, and each 5-kg/m² genetically-predicted higher BMI was associated with a 49% (1.49; 1.39 to 1.59) increased odds. After adjusting for diabetes and measured BP, chi-squared values for associations for waist-to-hip ratio and BMI fell by 56%. In contrast, mediator adjustment using multivariable MR found 83% and 69% reductions in chi-squared values for genetically-predicted waist-to-hip ratio and BMI models, respectively.

Conclusions Genetic analyses suggest that conventional associations between central and general adiposity with CKD are largely causal. However, conventional approaches underestimate mediating roles of diabetes, BP, and their correlates. Genetic approaches suggest these mediators explain most of adiposity-CKD–associated risk.

JASN 32:ccc–ccc, 2021. doi: https://doi.org/10.1681/ASN.2020050679

The prevalence of obesity is high and rising in many parts of the world,1–2 and this seems to account for some of the parallel increase in the age-adjusted prevalence of CKD.3 Measures of general adiposity (e.g., body mass index [BMI])4–9 and central adiposity (e.g., waist-to-hip ratio10 and waist circumference9) have been positively associated with risk of CKD. Similar sized BMI–CKD associations have been observed in people with and without diabetes and among those with and without high BP.4,5 and waist-to-hip ratio–CKD associations remain after adjustment for diabetes and BP.10 These observations raise a hypothesis that obesity mediates CKD risk through mechanisms independent of its known effects on risk of type 2 diabetes and BP.10,11 An alternative explanation, however, is residual confounding due to incomplete adjustment for type 2 diabetes and...
BP as a result of measurement error, or unmeasured confounding factors. The existence of other biases may also explain the flattening of adiposity–CKD associations in high-risk cohorts, and the higher risk of CKD among people with the lowest levels of BMI, with consequent J- or U-shaped associations.9

Genetic polymorphisms associated with adiposity are allocated randomly at conception, and their associations with CKD may be less susceptible to confounding or reverse causation.12 This can be used in a genetic epidemiologic approach referred to as Mendelian randomization (MR), the results of which may help to assess “causal” claims for a risk factor.13,14 Analogous to classic epidemiologic approaches, a multivariable approach can be applied to MR experiments,15 allowing estimation of the independent associations of general and central adiposity measures with CKD. Similarly, multivariable MR can assess whether, and by how much, adiposity–CKD associations are mediated by genetically determined type 2 diabetes and BP.

UK Biobank is a large prospective cohort study in an, on average, overweight population with genotyping data and baseline estimates of kidney function and albuminuria. We aimed to use data from UK Biobank to perform parallel conventional and genetic epidemiologic analyses to address the current uncertainties surrounding adiposity and CKD more definitively than previously possible. Our primary aims were to assess whether adiposity–CKD associations may be causal and by how much the known effect of adiposity on diabetes and BP may explain any causal associations with CKD. The secondary aims included assessing whether associations between central adiposity and CKD are independent of general adiposity (and vice versa) and by how much the associations between each adiposity measure (independent of the other) and CKD are mediated through diabetes and BP (Box 1).

METHODS

Study Population

UK Biobank is a large prospective cohort study of 502,650 middle-aged adults aged 40–69 years recruited between 2006 and 2010 in 22 assessment centers across the United Kingdom. Data include self-completed touch-screen questionnaires, computer-assisted interviews, physical and functional measurements, and biochemical assays. Genome-wide genotyping was performed in the whole cohort using the Affymetrix UK BiLEVE Axiom array and the Affymetrix UK Biobank Axiom array, and the UK Biobank genotype data were imputed with IMPUTE4 using the Haplotype Reference Consortium and the UK 10K and 1000 Genomes phase 3 reference panels.16 A repeat assessment was conducted among a subsample of approximately 5% of the participants in 2012–2013. Detailed descriptions of UK Biobank are provided elsewhere.17

All analyses (conventional and genetic) used the same study population of nonrelated White British participants (n = 375,351) and the same exclusions, which were those who withdrew their data (n = 133); those with extreme BMI (< 15 or > 60 kg/m², n = 77); and those with missing data on adiposity measures (n = 9,221), BP (n = 1,757), glycosylated hemoglobin (HbA1c; n = 30,878), or albuminuria or eGFR (n = 11,655) at baseline (lower limit of detection for urinary albumin = 6.7 mg/L). To reduce the potential for bias due to preexisting disease, those with self-reported cancer (n = 38,516), chronic obstructive pulmonary disease (n = 1,563), or liver cirrhosis/liver failure (n = 323) at baseline were also excluded.

Exposures and Covariates

For conventional and genetic analyses, waist-to-hip ratio and BMI were selected as the measures of general and central adiposity, respectively, due to their widespread use, low correlation (r = 0.46 for women and 0.60 for men in UK Biobank), and the existence of relevant genome-wide association studies (GWAS).18,19 Potential confounders were identified on the basis of the assumed pathways between adiposity (the exposure) and CKD (the outcome) and included, from the recruitment assessment, age, education (college/university degree, A levels/AS levels or equivalent, O levels/CSEs/NVQ/other), Townsend index of social deprivation (fifths), smoking (current smoker, previous smoker, never smoker, prefer not to answer/missing), and physical activity (< 10, ≥ 10–< 50, ≥ 50 metabolic equivalents h/wk). Models adjusting for mediators included diabetes status (self-reported diabetes mellitus or HbA1c ≥ 6.5%, prediabetes [HbA1c between 5.7% and < 6.5%], no diabetes [HbA1c < 6.5%]), duration of diabetes (years), systolic BP (SBP; millimeters of mercury), and diastolic BP (DBP; millimeters of mercury) at baseline. For the genetic analyses, instruments for waist-to-hip ratio and BMI were derived using independent single-nucleotide polymorphisms (SNPs; R² < 0.1; separated by 1000 kb) identified from the most recent GWAS, which have combined data from multiple studies,18,19 with UK Biobank contributing nearly two-thirds of participants (Table 1). From these GWAS, 394 SNPs (explaining 2.5% of the variance in men...
and 5.3% of variance in women) and 773 SNPs (explaining 6.1% of the variance in men and 5.5% of variance in women) were associated with waist-to-hip ratio and BMI, respectively, at P<5×10−9 (Supplemental Figures 1 and 2). These SNPs were combined into sex-specific genetic risk scores for waist-to-hip ratio and BMI. The genetic risk scores were normally distributed and used in individual-level data analyses by calculating the sum of SNP dosage for each participant. To reduce possible biases introduced by using the same population for GWAS and MR analyses, weights for SNP-specific effect sizes were extracted from non–UK Biobank sources wherever possible. Sex-specific effects of adiposity-selected SNPs on adiposity measures were extracted from the European-descendent participants of an earlier Genetic Investigation of Anthropometric Trait Consortium meta-analysis. For the multivariable MR analyses adjusting for effect mediators (aims 2.2 and 4.2), genetic effects of the selected adiposity-associated SNPs on type 2 diabetes, SBP, and DBP were included in models. The effect of each adiposity-related SNP on type 2 diabetes risk was estimated using weights taken from European-descendent participants of the Diabetes Genetics Replication and Meta-Analysis consortium, and SNP effects on BP identified by SNP-specific linear regression from UK Biobank, with adjustments for age, age squared, sex, the top 40 ancestry-based principal components, and the genotyping array (Table 1). The results of sex-combined GWAS was used for the type 2 diabetes and BP weights as effect sizes did not differ importantly by sex.

Outcomes
Because it is considered that adiposity can potentially cause intraglomerular hypertension (detectable as albuminuria), and subsequently progressive loss of kidney function, the primary outcome (referred to as “CKD”) was a composite defined as long-term RRT, or a Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) eGFR calculated from both serum cystatin C and creatinine <60 ml/min per 1.73 m², or a spot urinary albumin-creatinine ratio ≥3 mg/mmol. Sensitivity analyses for these outcomes included analyses (1) by two components of this outcome (i.e., those outcomes on the basis of kidney function and those on the basis of albuminuria, considered separately) and (2) using CKD-EPI eGFR calculated from creatinine alone and by cystatin C alone.

Statistical Analyses
For conventional epidemiologic analyses, logistic regression was used to estimate the sex-specific associations of waist-to-hip ratio and BMI with prevalence of the CKD outcomes. Overall estimates were calculated by taking the inverse variance-weighted average of these sex-specific estimates. For primary aims, models were first adjusted for potential confounders (aim 1.1) and were then adjusted for the mediators, including diabetes and measured BP (aim 2.1). For secondary aims, models were adjusted for potential confounders and reciprocal adiposity (i.e., waist-to-hip ratio adjusted for BMI and vice versa; aim 3.1) and were additionally adjusted for the mediators (aim 4.1) (Box 1).

To account for measurement error, log odds of any CKD were plotted against the mean adiposity measures at resurvey by fifths of waist-to-hip ratio and BMI in men and women, and odds ratios (ORs) per incremental increase in measured adiposity measure were derived from the exponential of the
slope of inverse variance-weighted regression line across the top four-fifths of adiposity by sex. This approach was taken as other cohorts have found that intra-individual variation in adiposity measures does not change over time, suggesting measurement error accounts for the majority of the apparent intra-individual variation. SDs are reduced after taking account of measurement error and are calculated by multiplying the SD by the square root of its regression dilution ratio. BMI associations are presented per 0.06 for waist-to-hip ratio and per 5-kg/m² higher BMI, which is equivalent to increments of 1.1 times its corrected SD. To allow for comparisons between adiposity-CKD associations, waist-to-hip ratio associations are also presented per 1.1 times its corrected SD. For MR with basic adjustment, the logistic regression with standard genetic MR methods with summary-level data to examine the robustness of the MR results to violations of the instrumental variable assumptions. Analyses were performed in SAS version 9.4 (SAS Institute, Cary, NY) and R v3.5.1.

RESULTS

Population Characteristics
Among the 281,228 participants included in analyses, mean (SD) age was 56.6 (8.0) years, and 148,692 (53%) were males. The key sensitivity analysis was performing analyses by diabetes status at baseline to assess associations in people without diabetes. Other sensitivity analyses included (1) excluding SNPs that were at, or highly correlated with, loci associated with differential expression of genes in the kidney and so, may potentially have direct effects on the kidney that are not mediated through adiposity; (2) different CKD outcomes (see above); and (3) standard genetic MR methods with summary-level data to examine the robustness of the MR results to violations of the instrumental variable assumptions. Analyses were performed in SAS version 9.4 (SAS Institute, Cary, NY) and R v3.5.1.

Table 1. Sources of European ancestry genetic data used for genetic analyses

<table>
<thead>
<tr>
<th>Exposures & Mediators</th>
<th>Adiposity-Specific SNP Selection</th>
<th>Weights for Adiposity-Specific SNP Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data Source</td>
<td>No. of SNPs Selected</td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td>GWAS18</td>
<td>394</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMI GWAS19</td>
<td>773</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td>—</td>
<td>394 for waist-to-hip ratio, 773 for BMI</td>
</tr>
<tr>
<td>BP</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Sex-specific effects of adiposity-selected SNPs on adiposity measures were used. GIANT, Genetic Investigation of Anthropometric Traits consortium; —, not applicable; DIAGRAM, Diabetes Genetics Replication and Meta-Analysis consortium.

*UK Biobank used for adiposity-specific SNP weights for BP as appropriate publicly available data from other sources were unavailable.
women. Five percent of the participants (n=14,825; 5.3%) had diabetes, and 6.4% (n=18,034) had evidence of CKD. Mean (SD) SBP/DBP was 138/82 (19/10) mmHg. Supplemental Tables 1 and 2 provide these and other baseline characteristics for the cohort by sex and by fifths of both measured adiposity and the genetic risk scores for adiposity.

Mean (SD) waist-to-hip ratios were 0.93 (0.06) and 0.82 (0.07) in men and women, respectively. The difference in mean waist-to-hip ratio between the top fifth and the bottom fifth of its genetic risk score was 0.03 in men and 0.04 in women (which is equivalent to 0.43 and 0.64 SDs, respectively, and 0.54 and 0.80 corrected SDs, respectively). It also predicted a 1.1-kg/m² higher BMI (0.23 SDs and 0.23 corrected SDs) (Table 2).

Mean (SD) BMI was 27.4 (4.7) kg/m², and the difference in mean BMI between the top fifth and the bottom fifth of its genetic risk score was 3.2-kg/m² (0.68 SDs and 0.70 corrected SDs), also predicting an increase in waist-to-hip ratio of 0.02 (0.37 and 0.26 SDs and 0.46 and 0.32 corrected SDs in men and women, respectively) (Table 2).

Table 2 presents differences in other baseline characteristics between the top and bottom fifths of each exposure. Differences in age, level of deprivation, education, smoking status, and physical activity were generally much smaller across top versus bottom fifths of the adiposity-related genetic risk scores than the top versus bottom fifths of measured adiposity, supporting the use of MR to reduce the risk of residual confounding. Nevertheless, there remained a smaller proportion of college/university degrees and nonsmokers among those with higher genetic-predicted risk of increased waist-to-hip ratio and BMI. The expected increase in prevalence of diabetes with increasing genetic-predicted risk of adiposity was observed. For example, the prevalence of diabetes increased from 3.7% in the bottom fifth to 6.7% in the top fifth of the genetic risk score for waist-to-hip ratio. In comparison, the increase in SBP between the bottom and top fifths was more modest (from 138 to 139 mm Hg).

Waist-to-Hip Ratio

In conventional analyses, there was a J-shaped association between waist-to-hip ratio and CKD, which was log linear across the top four-fifths of waist-to-hip ratio. As biases resulting from ill health may explain the flattening of associations at the lowest levels of adiposity, only the top four-fifths were used to estimate the size of associations per 0.06 increment in conventional analyses. Associations across the narrower range of waist-to-hip ratio predicted by the genetic risk score were log linear throughout, allowing regression across all participants’ data (Supplemental Figure 3). In confounder-adjusted conventional analyses, each 0.06 increase in waist-to-hip ratio was associated with an OR of 1.69 (95% confidence interval [95% CI], 1.64 to 1.74; chi square = 1051) compared with a more modest association in genetic analyses of an OR of 1.29 (95% CI, 1.20 to 1.38; chi square = 53) (Figure 1). Further adjustment for BP and diabetes in the conventional analyses reduced the OR to 1.43 (95% CI, 1.39 to 1.48) and the chi-squared value by 56% (chi square = 466) (Figure 1). Analogous genetic associations attenuated ORs substantially (OR, 1.14; 95% CI, 1.05 to 1.24), reducing the chi-squared value by 83% (chi square = 9.1). This was largely accounted for by adjustment for genetically predicted risk of type 2 diabetes (Table 3; sex-specific results are provided in Supplemental Table 3).

Increased waist-to-hip ratio appeared to be causally associated with CKD independent of BMI because after adjustment for BMI, associations per 0.06 increase were 1.42 (95% CI, 1.37 to 1.47; chi square = 402) and 1.19 (95% CI, 1.10 to 1.29; chi square = 20) for conventional and genetic approaches, respectively. Additional adjustment of these models for diabetes and BP reduced the chi-squared values by 45% and 77%, respectively, to ORs of 1.30 (95% CI, 1.26 to 1.35; chi square = 222) and 1.10 (95% CI, 1.01 to 1.20; chi square = 4.7), respectively (Table 3).

BMI

In the conventional BMI analyses, there was also J-shaped association that was log linear across the top four-fifths of BMI; therefore, only the top four-fifths were used to estimate conventional associations per incremental increase in BMI, whereas log-linear associations throughout the range of genetically determined BMI studied allowed regression across all participants’ data (Supplemental Figure 3). Each 5-kg/m² increase in BMI was associated with an OR of 1.58 (95% CI, 1.55 to 1.62; chi square = 1487), compared with a corresponding OR of 1.49 (95% CI, 1.39 to 1.59; chi square = 129) in genetic analyses. Further adjustment for BP and diabetes in the conventional analyses led to an OR for each 5-kg/m² increase of 1.38 (95% CI, 1.35 to 1.41; chi square = 660) (Figure 1), which represented a 56% reduction in the chi-squared compared with the confounder-adjusted model. Further adjustment for BP and diabetes in the genetic analyses also attenuated ORs (1.30; 95% CI, 1.20 to 1.41; chi square = 40), which represented a 69% reduction in the chi square (Table 3).

Increased BMI appeared to be causally associated with CKD independent of waist-to-hip ratio because after adjustment for waist-to-hip ratio, ORs for each 5-kg/m² increase in BMI were 1.42 (95% CI, 1.39 to 1.46; chi square = 763) and 1.36 (95% CI, 1.24 to 1.49; chi square = 43), respectively. Additional adjustments for diabetes and BP reduced the chi-squared value by 55% in conventional and 52% in genetic analyses to ORs of 1.28 (95% CI, 1.25 to 1.31; chi square = 345) and 1.25 (95% CI, 1.14 to 1.38; chi square = 20), respectively (Table 3).

Sensitivity Analyses by Diabetes

CKD was only one-quarter as prevalent in people without diabetes compared with those with diabetes. Among those without diabetes, positive genetic associations between waist-to-hip ratio and CKD were present, with point estimates suggesting weaker associations (OR, 1.14; 95% CI, 1.05 to 1.23) than in people with diabetes (OR, 1.34; 95% CI, 1.10 to 1.64).
In those without diabetes, adjustment for BP reduced the chi square by 72% (from ten to three) compared with 28% in people with diabetes (from nine to six). Genetically predicted BMI was similarly strongly associated with CKD in those without diabetes (OR, 1.30; 95% CI, 1.19 to 1.41) and with diabetes (OR, 1.36; 95% CI, 1.18 to 1.56), with BP accounting for 56% and 43% of these associations, respectively (Supplemental Table 4).

DISCUSSION

Our over-riding aim was to use genetic epidemiologic approaches to reduce biases, which can distort findings in conventional epidemiologic analyses, and therefore, assess whether previously reported relatively strong adiposity-CKD

Table 2. Baseline characteristics and differences between top and bottom fifths of measured adiposity and genetic risk score

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All</th>
<th>Fifth of Measured Waist-to-Hip Ratio or Measured BMI<sup>a</sup></th>
<th>Fifth of GRS for Waist-to-Hip Ratio or BMI<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>V</td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waist-to-hip ratio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>0.93 (0.06)</td>
<td>0.85</td>
<td>1.03</td>
</tr>
<tr>
<td>Women</td>
<td>0.82 (0.07)</td>
<td>0.72</td>
<td>0.92</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>27.4 (4.7)</td>
<td>24.1</td>
<td>31.0</td>
</tr>
<tr>
<td>Potential confounders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, yr</td>
<td>56.6 (8.0)</td>
<td>54.3</td>
<td>58.4</td>
</tr>
<tr>
<td>College or university degree</td>
<td>89,459 (10.0%)</td>
<td>39.6%</td>
<td>23.8%</td>
</tr>
<tr>
<td>Deprivation score</td>
<td>−2.4 (−3.8, 0.0)</td>
<td>−2.6</td>
<td>−2.0</td>
</tr>
<tr>
<td>Current smoker</td>
<td>28,137 (10.0%)</td>
<td>7.4%</td>
<td>12.6%</td>
</tr>
<tr>
<td>Physical activity, MET h/wk</td>
<td>21 (9.6, 43.6)</td>
<td>25.2</td>
<td>17.6</td>
</tr>
<tr>
<td>Potential effect mediators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes<sup>c</sup></td>
<td>14,825 (5.3%)</td>
<td>1.3%</td>
<td>10.0%</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>138 (19)</td>
<td>135</td>
<td>141</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>82 (10)</td>
<td>79</td>
<td>85</td>
</tr>
<tr>
<td>Potential confounders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, yr</td>
<td>56.6 (8.0)</td>
<td>55.4</td>
<td>56.8</td>
</tr>
<tr>
<td>College or university degree</td>
<td>89,459 (10.0%)</td>
<td>40.7%</td>
<td>23.0%</td>
</tr>
<tr>
<td>Deprivation score</td>
<td>−2.4 (−3.8, 0.0)</td>
<td>−2.4</td>
<td>−1.9</td>
</tr>
<tr>
<td>Current smoker</td>
<td>28,137 (10.0%)</td>
<td>11.5%</td>
<td>9.3%</td>
</tr>
<tr>
<td>Physical activity, MET h/wk</td>
<td>21.5 (9.6, 43.6)</td>
<td>24.5</td>
<td>16.6</td>
</tr>
<tr>
<td>Potential effect mediators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes<sup>c</sup></td>
<td>14,825 (5.3%)</td>
<td>1.4%</td>
<td>10.5%</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>138 (19)</td>
<td>133</td>
<td>142</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>82 (10)</td>
<td>78</td>
<td>86</td>
</tr>
</tbody>
</table>

Differences of characteristics between top and bottom fifths of measured adiposity (waist-to-hip ratio and BMI) and GRS for adiposity are shown. Waist-to-hip ratio GRS and BMI GRS included 394 SNPs (variance explained: 2.53% in men and 5.29% in women) and 773 SNPs (variance explained: 6.14% in men and 5.54% in women), respectively. Exclusions were relatedness, non-White British, self-reported cancer, chronic obstructive pulmonary disease, or liver failure/cirrhosis, with missing values of GRS, adiposity measures, BP, albuminuria, or kidney function. GRS, genetic risk score; I, bottom fifth; V, top fifth; MET, metabolic equivalent.

^aData are mean (SD) and N (%) with adjustments for age where relevant or median (Q1, Q3).

^bData are mean (SD) and N (%) with adjustments for top 40 principal components and genotyping array or median (Q1, Q3).

^cDiabetes is defined as self-reported diabetes or HbA1c ≥ 6.5%.
associations may be causal.4–10 We found evidence that both central (i.e., waist-to-hip ratio) and general adiposity (i.e., BMI) seem to be independent and moderate causal risk factors for CKD. Genetic approaches estimate that each 0.06 increase in waist-to-hip ratio is associated with a 30% increased risk of CKD and that each 5-kg/m² higher BMI are associated with about a 50% increase in CKD risk. Genetic approaches also allow for a less confounded approach to assess mediation of associations. They suggest diabetes, BP, and their correlates account for the majority of the adiposity-CKD associations and a larger proportion than estimated by conventional approaches.

Table 3. Conventional and genetic associations between adiposity and CKD with different adjustments for reciprocal adiposity and mediators

<table>
<thead>
<tr>
<th>Adjustments</th>
<th>Waist-to-Hip Ratio, per 0.06 Higher Level</th>
<th>BMI, per 5-kg/m² Higher Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventionala</td>
<td>Geneticb</td>
</tr>
<tr>
<td>Confounder adjusted (aim 1)</td>
<td>1.69 (1.64 to 1.74) 1051.3</td>
<td>1.29 (1.20 to 1.38) 53.4 (Reference)</td>
</tr>
<tr>
<td>+ Diabetes alone</td>
<td>1.50 (1.45 to 1.55) 599.6 (43)</td>
<td>1.17 (1.08 to 1.27) 14.4 (73)</td>
</tr>
<tr>
<td>+ BP alone</td>
<td>1.62 (1.57 to 1.68) 890.3 (15)</td>
<td>1.22 (1.13 to 1.31) 28.2 (47)</td>
</tr>
<tr>
<td>+ Both (aim 2)</td>
<td>1.43 (1.39 to 1.48) 466.3 (56)</td>
<td>1.14 (1.05 to 1.24) 9.1 (83)</td>
</tr>
<tr>
<td>Adiposity adjusted (aim 3)</td>
<td>1.42 (1.37 to 1.47) 401.6 (Reference)</td>
<td>1.19 (1.10 to 1.24) 20.4 (Reference)</td>
</tr>
<tr>
<td>+ Diabetes alone</td>
<td>1.32 (1.28 to 1.37) 247.7 (38)</td>
<td>1.13 (1.04 to 1.23) 7.5 (63)</td>
</tr>
<tr>
<td>+ BP alone</td>
<td>1.40 (1.35 to 1.45) 372.7 (7)</td>
<td>1.14 (1.06 to 1.24) 10.8 (47)</td>
</tr>
<tr>
<td>+ Both (aim 4)</td>
<td>1.30 (1.26 to 1.35) 221.7 (45)</td>
<td>1.10 (1.01 to 1.20) 4.7 (77)</td>
</tr>
</tbody>
</table>

CKD (n=18,034, 6.4%) is defined as long-term renal replacement therapy, eGFR$_{cys}$ \geq 60 mL/min/1.73m² or urinary albumin: creatinine ratio \geq 3 mg/mmol.

ORs (95% CIs) of any CKD per 0.06 increase in waist−to−hip ratio or per 5 kg/m² increase in BMI with corrections for measurement error are shown.

Adjustment for mediators were based on measures of baseline diabetes and systolic/diastolic blood pressure in conventional analyses, and the genetic effects of the adiposity-selected SNPs on type 2 diabetes and systolic/diastolic blood pressure in genetic analyses.

BMI: body mass index; CI: confidence interval; CKD: chronic kidney disease; eGFR$_{cys}$: estimated glomerular filtration rate calculated from both serum cystatin C and creatinine; OR: odds ratio; SNP: single nucleotide polymorphism.

www.jasn.org JASN 32: ●●●●●●, 2021 Adiposity and CKD in UK Biobank Data 7
Among United Kingdom adults, recent data suggest about two-thirds of men and over one-half of women are overweight (i.e., BMI ≥25 kg/m²) and about one-quarter of both men and women are obese (i.e., BMI ≥30 kg/m²). As the BMI-CKD associations from the presented genetic analyses are similar in size to associations derived from more conventional approaches, they lend support to previous prospective findings that at ages 40–79 years, about one-third of advanced CKD in the United Kingdom is attributable directly or indirectly to being overweight or obese. It is conceivable that this proportion may be even larger in countries in which obesity is even more common and more limited access to treatment for diabetes and BP exists.

The presented genetic analyses find conventional approaches can somewhat underestimate the potential mediating role of diabetes and its correlates. Genetic analyses adjusting for diabetes found that about half of BMI-CKD associations and three-quarters of central adiposity-CKD associations could be explained by diabetes. By virtue of any correlation between diabetes and BP, such analyses include some adjustment for BP. Adjustment for systemic BP alone explained about 45% of genetic associations. A finding that BP is of more modest importance than diabetes is consistent with other genetic studies of BP and arguably, with randomized trial evidence, which estimate that a 10-mm Hg reduction in SBP may reduce albuminuria and ESKD risk by only about 10%. Further characterization of the precise pathogenic mechanisms by which diabetes and its correlates (known and unknown) mediate adiposity-CKD associations is not possible using MR approaches currently. Nevertheless, large intervention trials have shown that altered intrarenal hemodynamics from both upregulated renal proximal tubular glomerular filtration and renin-angiotensin-aldosterone system activation are key pathways that mediate diabetic kidney disease.

In people without diabetes, general population data using iohexol-measured GFR have demonstrated that central adiposity and impaired fasting glucose are associated with hyperfiltration. Correspondingly, UK Biobank data identify positive associations between higher adiposity levels with risk of CKD in people without diabetes or prediabetes. However, whereas CKD risk in people without diabetes was increased by 29% per 0.06-higher waist-to-hip ratio in conventional analyses adjusted for BP, only a 14% increased risk was identified from the corresponding genetic analyses. Notably, genetic analyses suggested BP explained three-quarters of this association, compared with an estimate of only one-quarter in conventional analyses (Supplemental Table 4). Genetic data, therefore, suggest that, although pathways not linked to diabetes or BP could still be responsible for mediating some of the effect of increased adiposity on CKD risk, the contribution of such pathways is substantially overestimated in conventional epidemiologic analyses.

This study benefits from UK Biobank’s incredible scale and the potential for genetic approaches to better control for biases, but some limitations may exist. First, some residual biases may remain. For example, many of the SNPs used in the genetic risk scores likely affect the central nervous system rather than acting peripherally. As well as modulating satiety, such variants could conceivably modify other behaviors that influence CKD risk. We observed that higher genetic-predicted adiposity was associated with cigarette smoking and lower educational attainment, which may result from the direct effect of SNPs rather than indirectly through the effect of SNPs on adiposity. Therefore, despite reassuring MR Egger analyses suggesting minimal evidence for pleiotropy in these analyses, the MR assumption that genetic variants are only affecting CKD risk through their effects on adiposity could be argued to be partially violated. Second, whether J-shaped conventional associations at low adiposity levels result from bias could not be assessed as the genetic risk scores were an insufficiently strong tool to cover the full range of observed adiposity. Third, a large proportion of the CKD outcomes is on the basis of the presence of albuminuria, which is not as important to patients as low eGFR or the need for long-term RRT. Nevertheless, analyses on the basis of CKD outcomes derived from eGFR found associations that were, if anything, stronger than adiposity-albuminuria associations (Supplemental Figure 5), and albuminuria is such a strong predictor of advanced CKD that it is part of its definition and staging. Lastly, the study used a general population cohort with well-controlled BP and was restricted to people of European ancestry, and so, results may not be generalizable to other populations.

In conclusion, genetic approaches show increased central adiposity and general adiposity both seem to be independent and important causes of CKD, with associations largely explained by diabetes, BP, and their correlates.

DISCLOSURES

Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU) have a staff policy of not accepting honoraria or other payments from the pharmaceutical industry, except for the reimbursement of costs to participate in scientific meetings. J. Emberson reports grants from Boehringer Ingeleim, outside the submitted work. R. Haynes reports grants from Boehringer Ingeleim and grants from Novartis, outside the submitted work. W. Herrington reports grants from Boehringer Ingeleim and Eli Lilly and grants from the British Heart Foundation, outside the submitted work. M. Landray reports grants from Boehringer Ingelheim, grants from Health Data Research UK, grants from Merck Sharpe & Dohme, grants from Novartis, nonfinancial support from AbbVie, and nonfinancial support from Roche, outside the submitted work. S. Lewington reports grants from Centres for Disease Control (CDC) Foundation, outside the submitted work. N. Staplin reports grants from Boehringer Ingelheim, outside the submitted work. M. Woodward reports personal fees from Amgen and Kirin, outside the submitted work. All remaining authors have nothing to disclose.

FUNDING

The Medical Research Council Population Health Research Unit at the University of Oxford, which is part of the CTSU, receives core funding from
ACKNOWLEDGMENTS

This paper has not been published previously in whole or part.

This research has been conducted using the open-access UK Biobank Resource (application no. 15595) and was supported by Health Data Research UK and the National Institute for Health Research Oxford Biomedical Research Center.

W. Herrington conceived the study; P. Zhu developed the study design and performed analyses under the supervision of W. Herrington, S. Lewington, and N. Staplin; M. Landray and C. Sudlow contributed to UK Biobank data collection; N. Staplin and P. Zhu had full access to the data; W. Herrington and P. Zhu wrote the first draft of the manuscript; and all authors contributed to data interpretation and revision of the manuscript.

SUPPLEMENTAL MATERIAL

This article contains the following supplemental material online at http://jasn.asnjournals.org/lookup/suppl doi:10.1681/ASN.2020050679/-/DCSupplemental.

Supplemental Figure 1. Selection of variants for the waist-to-hip ratio genetic risk score.

Supplemental Figure 2. Selection of variants for the BMI genetic risk score.

Supplemental Figure 3. Conventional and genetic associations between adiposity measures and CKD by sex.

Supplemental Figure 4. Conventional and genetic associations between adiposity measures and CKD using GRS with exclusions of loci with differential gene expression in kidney.

Supplemental Figure 5. Conventional and genetic associations between adiposity measures and CKD by different CKD outcomes.

Supplemental Figure 6. Conventional and genetic associations between adiposity measures and CKD by eGFR formula.

Supplemental Figure 7. Genetic associations between adiposity measures and CKD using two-sample Mendelian randomization.

Supplemental Table 1. (A) Baseline characteristics by fifths of measured waist-to-hip ratio and genetic risk score (GRS) in men and (B) baseline characteristics by fifths of measured waist-to-hip ratio and GRS in women.

Supplemental Table 2. (A) Baseline characteristics by fifths of measured BMI and genetic risk score (GRS) in men and (B) baseline characteristics by fifths of measured BMI and GRS in women.

Supplemental Table 3. (A) Conventional and genetic associations between adiposity and CKD with different adjustments for reciprocal adiposity and mediators in men and (B) conventional and genetic associations between adiposity and CKD with different adjustments for reciprocal adiposity and mediators in women.

Supplemental Table 4. Conventional and genetic associations between adiposity and CKD by diabetes status with and without adjustment for BP.

REFERENCES

GLGC; ICBP; MAGIC Investigators; MuTHER Consortium; MiGen Consortium; PAGE Consortium; ReproGen Consortium; GENIE Consortium; International Endogene Consortium; Genetic studies of body mass index yield new insights for obesity biology. Nature 518: 197–206, 2015.

P.Z., W.G.H., S.L., and N.S. contributed equally to this work.
AFFILIATIONS

1Medical Research Council Population Health Research Unit at the University of Oxford, Nuffield Department of Population Health, Oxford, United Kingdom
2Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
3Oxford Kidney Unit, Churchill Hospital, Oxford, United Kingdom
4Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
5Health Data Research UK, University of Oxford, Oxford, United Kingdom
6National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
7Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom
8The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
9The George Institute for Global Health, Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
10Welch Center for Prevention, Epidemiology and Clinical Research, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland